
Typical Sequences Revisited — Computing Width Parameters of

Graphs∗

Hans L. Bodlaender1 Lars Jaffke2 Jan Arne Telle2

1Utrecht University, The Netherlands
h.l.bodlaender@uu.nl

2University of Bergen, Norway
{lars.jaffke,jan.arne.telle}@uib.no

December 10, 2020

Abstract

In this work, we give a structural lemma on merges of typical sequences, a notion that was
introduced in 1991 [Lagergren and Arnborg, Bodlaender and Kloks, both ICALP 1991] to obtain
constructive linear time parameterized algorithms for treewidth and pathwidth. The lemma
addresses a runtime bottleneck in those algorithms but so far it does not lead to asymptotically
faster algorithms. However, we apply the lemma to show that the cutwidth and the modified
cutwidth of series parallel digraphs can be computed in polynomial time.

1 Introduction

In this paper we revisit an old key technique from what currently are the theoretically fastest
parameterized algorithms for treewidth and pathwidth, namely the use of typical sequences, and
give additional structural insights for this technique. In particular, we show a structural lemma,
which we call the Merge Dominator Lemma. The technique of typical sequences brings with it a
partial order on sequences of integers, and a notion of possible merges of two integer sequences;
surprisingly, the Merge Dominator Lemma states that for any pair of integer sequences there exists
a single merge that dominates all merges of these integer sequences, and this dominating merge can
be found in linear time. On its own, this lemma does not lead to asymptotically faster parameterized
algorithms for treewidth and pathwidth, but, as we discuss below, it is a concrete step towards
such algorithms.

The notion of typical sequences was introduced independently in 1991 by Lagergren and Arn-
borg [17] and Bodlaender and Kloks [8]. In both papers, it is a key element in an explicit dynamic
programming algorithm that given a tree decomposition of bounded width `, decides if the path-
width or treewidth of the input graph G is at most a constant k. Lagergren and Arnborg build
upon this result and show that the set of forbidden minors of graphs of treewidth (or pathwidth)
at most k is computable; Bodlaender and Kloks show that the algorithm can also construct a tree

∗This work was started when the third author was visiting Universitat Politecnica de Valencia, and part of it
was done while the second author was visiting Utrecht University. The first author was partially supported by the
Networks project, funded by the Netherlands Organization for Scientific Research (NWO). The second author is
supported by the Bergen Research Foundation (BFS).

1

or path decomposition of width at most k, if existing, in the same asymptotic time bounds. The
latter result is a main subroutine in Bodlaender’s linear time algorithm [3] for treewidth-k. If one
analyses the running time of Bodlaender’s algorithm for treewidth or pathwidth ≤ k, then one
can observe that the bottleneck is in the subroutine that calls the Bodlaender-Kloks dynamic pro-
gramming subroutine, with both the subroutine and the main algorithm having time O(2O(k3)n)
for treewidth, and O(2O(k2)n) for pathwidth. See also the recent work by Fürer for pathwidth
[13], and the simplified versions of the algorithms of [3, 8] by Althaus and Ziegler [1]. Now, over a
quarter of a century after the discovery of these results, even though much work has been done on
treewidth recognition algorithms (see e.g. [2, 5, 11, 12, 13, 16, 18, 19]), these bounds on the function
of k are still the best known, i.e., no O(2o(k

3)nO(1)) algorithm for treewidth, and no O(2o(k
2)nO(1))

algorithm for pathwidth is known. An interesting question, and a long-standing open problem
in the field [4, Problem 2.7.1], is whether such algorithms can be obtained. Possible approaches
to answer such a question is to design (e.g. ETH or SETH based) lower bounds, find an entirely
new approach to compute treewidth or pathwidth in a parameterized setting, or improve upon the
dynamic programming algorithms of [17] and [8]. Using our Merge Dominator Lemma we can go
one step towards the latter, as follows.

The algorithms of Lagergren and Arnborg [17] and Bodlaender and Kloks [8] are based upon
tabulating characteristics of tree or path decompositions of subgraphs of the input graph; a charac-
teristic consists of an intersection model, that tells how the vertices in the current top bag interact,
and for each part of the intersection model, a typical sequence of bag sizes.1 The set of characteris-
tics for a join node is computed from the sets of characteristics of its (two) children. In particular,
each pair of characteristics with one from each child can give rise to exponentially (in k) many
characteristics for the join node. This is because exponentially many typical sequences may arise
as the merges of the typical sequences that are part of the characteristics. In the light of our Merge
Dominator Lemma, only one of these merges has to be stored, reducing the number of character-
istics arising from each pair of characteristics of the children from 2O(k) to just 1. Moreover, this
dominating merge can be found using O(k) integer operations (which translates to time linear in
the size of the sequence) with no large hidden constants.

Merging typical sequences at a join node is however not the only way the number of character-
istics can increase throughout the algorithm, e.g. at introduce nodes, the number of characteristics
increases in a different way. Nevertheless, the number of intersection models is O(kO(k)) for path-
width and O(kO(k2)) for treewidth; perhaps, with additional techniques, the number of typical
sequences per part can be better bounded — in the case that a single dominating typical sequence
per part suffices, this would reduce the number of table entries per node to O(kO(k)) for pathwidth-
k, and to O(kO(k2)) for treewidth-k, and yield O(kO(k)n) and O(kO(k2)n) time algorithms for the
respective problems. Concretely, suppose one could prove an analogue to the Merge Dominator
Lemma for introduce nodes, stating that given a characteristic stored at their child, there is a single
characteristic that dominates all the others that could potentially arise. Then the above mentioned
bound of a single dominating typical sequence per part in the intersection model would follow and
therefore, so would the improved algorithms for computing treewidth and pathwidth.

We give direct algorithmic consequences of the Merge Dominator Lemma in the realm of
computing width parameters of directed acyclic graphs (DAGs). Specifically, we show that the
(Weighted) Cutwidth and Modified Cutwidth problems on DAGs, which given a directed
acyclic graph ask for the topological order that minimizes the cutwidth and modified cutwidth, re-

1This approach was later used in several follow up results to obtain explicit constructive parameterized algorithms
for other graph width measures, like cutwidth [23, 24], branchwidth [9], different types of search numbers like linear
width [10], and directed vertex separation number [7].

2

spectively,2 can be solved in polynomial time on series parallel digraphs. Note that the restriction
of the solution to be a topological order has been made as well in other works, e.g. [6].

Our algorithm for Cutwidth of series parallel digraphs has the same structure as the dynamic
programming algorithm for undirected Cutwidth [6], but, in addition to obeying directions of
edges, we have a step that only keeps characteristics that are not dominated by another character-
istic in a table of characteristics. Now, with help of our Merge Dominator Lemma, we can show
that in the case of series parallel digraphs, there is a unique dominating characteristic; the dynamic
programming algorithm reverts to computing for each intermediate graph a single ‘optimal partial
solution’. This strategy also works in the presence of edge weights, which gives the algorithm
for the corresponding Weighted Cutwidth problem on series parallel digraphs. Note that the
cutwidth of a directed acyclic graph is at least the maximum indegree or outdegree of a vertex;
e.g., a series parallel digraph formed by the parallel composition of n− 2 paths with three vertices
has n vertices and cutwidth n− 2. To compute the modified cutwidth of a series parallel digraph,
we give a linear time reduction to the Weighted Cutwidth problem on series parallel digraphs.

This paper is organized as follows. In Section 2, we give a number of preliminary definitions, and
review existing results, including several results on typical sequences from [8]. In Section 3, we state
and prove the main technical result of this work, the Merge Dominator Lemma. Section 4 gives our
algorithmic applications of this lemma, and shows that the directed cutwidth and directed modified
cutwidth of a series parallel digraph can be computed in polynomial time. Some final remarks are
made in Section 5.

2 Preliminaries

We use the following notation. For two integers a, b ∈ Z with a ≤ b, we let [a..b] ..= {a, a+ 1, . . . , b}
and for a > 0, we let [a] ..= [1..a]. If X is a set of size n, then a linear order is a bijection
π : X → [n]. Given a subset X ′ ⊆ X of size n′ ≤ n, we define the restriction of π to X ′ as the
bijection π|X′ : X ′ → [n′] which is such that for all x′, y′ ∈ X ′, π|X′(x′) < π|X′(y′) if and only if
π(x′) < π(y′).

Integer Operations. In this work, the runtime of several algorithms is stated in terms of the
number of required integer operations. Here, by integer operations we mean basic manipulations
such as adding two integers, or comparing two integers. For integers whose absolute value is at
most some n ∈ N, such operations can be performed in O(log n) time. Moreover, whenever we give
the runtime of an algorithm in terms of the number of integer operations, then the time it takes to
execute the algorithm is also upper bounded in terms of the time it takes to execute these integer
operations. For instance, an algorithm that ‘uses O(f(n)) integer operations’ where the value of
each integer in the instance is upper bounded by m runs in O(f(n) logm) time.

Sequences and Matrices. We denote the elements of a sequence s by s(1), . . . , s(n). We denote
the length of s by l(s), i.e., l(s) ..= n. For two sequences a = a(1), . . . , a(m) and b = b(1), . . . , b(n),
we denote their concatenation by a ◦ b = a(1), . . . , a(m), b(1), . . . , b(n). For two sets of sequences
A and B, we let A�B ..= {a ◦ b | a ∈ A ∧ b ∈ B}. For a sequence s of length n and a set X ⊆ [n],
we denote by s[X] the subsequence of s induced by X, i.e., let X = {x1, . . . , xm} be such that for

2For a topological order v1, . . . , vn of a DAG, its cutwidth is the maximum, over all i ∈ {1, . . . , n − 1}, of the
number of arcs whose tail is in {v1, . . . , vi} and whose head is in {vi+1, . . . , vn}, while its modified cutwidth is the
maximum, over all i ∈ {2, . . . , n − 1}, of the number of arcs whose tail is in {v1, . . . , vi−1} and whose head is in
{vi+1, . . . , vn}.

3

all i ∈ [m− 1], xi < xi+1; then, s[X] ..= s(x1), . . . , s(xm). For x1, x2 ∈ [n] with x1 ≤ x2, we use the
shorthand ‘s[x1..x2]’ for ‘s[[x1..x2]]’.

An (integer) matrix M ∈ Zm×n is said to have m rows and n columns.3 For sets X ⊆ [m] and
Y ⊆ [n], we denote by M [X,Y] the submatrix of M induced by X and Y , which consists of all
the entries from M whose indices are in X × Y . For x1, x2 ∈ [m] with x1 ≤ x2 and y1, y2 ∈ [n]
with y1 ≤ y2, we use the shorthand ‘M [x1..x2, y1..y2]’ for ‘M [[x1..x2], [y1..y2]]’. For a sequence
s(1), s(2), . . . , s(`) of indices of a matrix M , we let

M [s] ..= M [s(1)],M [s(2)], . . . ,M [s(`)] (1)

be the corresponding sequence of entries from M .
For illustrative purposes we enumerate the columns of a matrix in a bottom-up fashion through-

out this paper, i.e., we consider the index (1, 1) as the ‘bottom left corner’ and the index (m,n) as
the ‘top right corner’.

Integer Sequences. Let s be an integer sequence of length n. We use the shorthand ‘min(s)’
for ‘mini∈[n] s(i)’ and ‘max(s)’ for ‘maxi∈[n] s(i)’; we use the following definitions. We let

argmin(s) ..= {i ∈ [n] | s(i) = min(s)} and argmax(s) ..= {i ∈ [n] | s(i) = max(s)}

be the set of indices at whose positions there are the minimum and maximum element of s, respec-
tively. Whenever we write i ∈ argmin(s) (j ∈ argmax(s)), then the choice of i (j) can be arbitrary.
In some places we require a canonical choice of the position of a minimum or maximum element,
in which case we will always choose the smallest index. Formally, we let

argmin?(s) ..= min argmin(s), and argmax?(s) ..= min argmax(s).

The following definition contains two notions on pairs of integer sequences that are necessary
for the definitions of domination and merges.

Definition 2.1. Let r and s be two integer sequences of the same length n.

(i) If for all i ∈ [n], r(i) ≤ s(i), then we write ‘r ≤ s’.

(ii) We write q = r+s for the integer sequence q(1), . . . , q(n) with q(i) = r(i)+s(i) for all i ∈ [n].

Definition 2.2 (Extensions). Let s be a sequence of length n. We define the set E(s) of exten-
sions of s as the set of sequences that are obtained from s by repeating each of its elements an
arbitrary number of times, and at least once. Formally, we let

E(s) ..= {s1 ◦ s2 ◦ · · · ◦ sn | ∀i ∈ [n] : l(si) ≥ 1 ∧ ∀j ∈ [l(si)] : si(j) = s(i)}.

Definition 2.3 (Domination). Let r and s be integer sequences. We say that r dominates s,
in symbols ‘r ≺ s’, if there are extensions r∗ ∈ E(r) and s∗ ∈ E(s) of the same length such that
r∗ ≤ s∗. If r ≺ s and s ≺ r, then we say that r and s are equivalent, and we write r ≡ s.

If r is an integer sequence and S is a set of integer sequences, then we say that r dominates S,
in symbols ‘r ≺ S’, if for all s ∈ S, r ≺ s.

Remark 2.4 (Transitivity of ‘≺’). In [8, Lemma 3.7], it is shown that the relation ‘≺’ is transitive.
As this is fairly intuitive, we may use this fact without stating it explicitly throughout this text.

3Since all matrices considered in this work are integer matrices, we will simply refer to them as matrices.

4

0

∞

Figure 1: Illustration of the shape of a typical sequence.

A merge of two integer sequences r and s is the sum of an extension of r and an extension of s
of the same length.

Definition 2.5 (Merges). Let r and s be two integer sequences. We define the set of all merges
of r and s, denoted by r ⊕ s, as r ⊕ s ..= {r∗ + s∗ | r∗ ∈ E(r), s∗ ∈ E(s), l(r∗) = l(s∗)}.

2.1 Typical Sequences

We now define typical sequences, show how to construct them using linearly many integer opera-
tions, and restate several lemmas due to Bodlaender and Kloks [8] that will be used throughout
this text.

Definition 2.6. Let s = s(1), . . . , s(n) be an integer sequence of length n. The typical sequence of
s, denoted by τ(s), is obtained from s by an exhaustive application of the following two operations:

Removal of Consecutive Repetitions. If there is an index i ∈ [n− 1] such that s(i) = s(i+ 1), then
we change the sequence s from s(1), . . . , s(i), s(i+ 1), . . . , s(n) to s(1), . . . , s(i), s(i+ 2), . . . , s(n).

Typical Operation. If there exist i, j ∈ [n] such that j − i ≥ 2 and for all i ≤ k ≤ j, s(i) ≤
s(k) ≤ s(j), or for all i ≤ k ≤ j, s(i) ≥ s(k) ≥ s(j), then we change the sequence s from
s(1), . . . , s(i), s(i+ 1), . . . , s(j), . . . , s(n) to s(1), . . . , s(i), s(j), . . . , s(n), i.e., we remove all elements
(strictly) between index i and j.

To support intuition, we illustrate the rough shape of a typical sequence in Figure 1. It is not
difficult to see that the typical sequence can be computed using a quadratic amount of integer
operations, by an exhaustive application of the definition. Here we discuss how to do it using a
linear amount of integer operations. We may view a typical sequence τ(s) of an integer sequence
s as a subsequence of s. While τ(s) is unique, the choice of indices that induce τ(s) may not be
unique. We show that we can find a set of indices that induce the typical sequence with help of
the following structural proposition.

Proposition 2.7. Let s be an integer sequence and let i? ∈ {argmin?(s), argmax?(s)}. Let 1 =..

j0 < j1 < j2 < . . . < jt < jt+1
..= i? be pairwise distinct integers, such that s(j0), . . . , s(jt+1) are

pairwise distinct. If for all h ∈ [0..t],

- if s(jh) > s(jh+1) then jh = argmax?(s[1..jh+1]) and jh+1 = argmin?(s[1..jh+1]), and

- if s(jh) < s(jh+1) then jh = argmin?(s[1..jh+1]) and jh+1 = argmax?(s[1..jh+1]),

then the typical sequence of s restricted to [i?] is equal to s(j0), s(j1), . . . , s(jt), s(jt+1).

5

Proof. First, we observe that by the choice made in the definition of argmin? and argmax?,

for each h ∈ [0..(t+ 1)] there is no i < jh such that s(i) = s(jh). (2)

We prove the following statement. Under the stated conditions, for a given h ∈ [0..t + 1], the
typical sequence of s restricted to [jh..i

?] is equal to s(jh), s(jh+1), . . ., s(jt+1). The proposition
then follows from the case h = 0. The proof is by induction on d ..= (t+1)−h. For d = 0, it trivially
holds since the minimum and the maximum element are always part of the typical sequence, and
since [jt+1..i

?] = {i?}.
Now suppose d > 0, and for the induction hypothesis that the claim holds for d−1. Suppose that

s(jh) > s(jh+1), meaning that jh = argmax?(s[1..jh+1]), and jh+1 = argmin?(s[1..jh+1]), the other
case is symmetric. By the induction hypothesis, the typical sequence of s restricted to [jh+1..i

?]
is equal to s(jh+1), . . ., s(jt+1), in particular it implies that s(jh+1) is an element of the typical
sequence. To prove the induction step, we have to show that the typical sequence of s restricted to
[jh..jh+1] is equal to s(jh), s(jh+1). We first argue that if there is an element of the typical sequence
in [jh..(jh+1 − 1)], then it must be equal to s(jh). By (2), we have that there is no i < jh+1 such
that s(i) = s(jh+1), and together with the fact that s(jh+1) is the minimum value of s[1..jh+1],
we conclude that [jh..(jh+1 − 1)] cannot contain any element of the typical sequence that is equal
to s(jh+1). Next, since the typical operation removes all elements i ∈ [(jh + 1)..(jh+1 − 1)] with
s(jh) > s(i) > s(jh+1), and since jh = argmax?(s[1..jh+1]), the only elements from [jh..(jh+1 − 1)]
that the typical sequence may contain have value s(jh).

It remains to argue that s(jh) is indeed an element of the typical sequence. Suppose not, then
there are indices i, i′ with i < jh < i′, such that either s(i) ≤ s(jh) ≤ s(i′), or s(i) ≥ s(jh) ≥ s(i′),
and we may assume that at least one of the inequalities is strict in each case. For the latter case,
since jh = argmax?(s[1..jh+1]), we would have that s(i) = s(jh), which is a contradiction to (2).
Hence, we may assume that s(i) ≤ s(jh) ≤ s(i′). There are two cases to consider: i′ ∈ [(jh+1)..jh+1],
and i′ > jh+1. If i′ ∈ [(jh + 1)..jh+1], then s(i′) = s(jh), as s(jh) = argmax(s[1..jh+1]). We can
conclude that in this case, the typical sequence must contain an element equal to s(i′), and hence
equal to s(jh). If i′ > jh+1, then the typical operation corresponding to i and i′ also removes
s(jh+1), a contradiction with the induction hypothesis which asserts that s(jh+1) is part of the
typical sequence induced by [jh+1..i

?]. We can conclude that s(jh) is part of the typical sequence,
finishing the proof. �

From the previous proposition, we have the following consequence about the structure of typical
sequences ending in the minimum element, which will be useful in the proof of Lemma 3.10.

Corollary 2.8. Let t be a typical sequence of length n such that n ∈ argmin(t). Then, for each
k ∈

[
bn2 c
]
, n− 2k + 1 ∈ argmax(t[1..(n− 2k + 1)]) and n− 2k ∈ argmin(t[1..(n− 2k)]).

Equipped with Proposition 2.7, we can now proceed and give the algorithm that computes a
typical sequence of an integer sequence using linearly many integer operations.

Lemma 2.9. Let s be an integer sequence of length n. Then, one can compute τ(s), the typical
sequence of s, in O(n) integer operations.

Proof. First, we check for each i ∈ [n−1] whether s(i) = s(i+1), and if we find such an index i, we
remove s(i). We assume from now on that after these modifications, s has at least two elements,
otherwise it is trivial. As observed above, the typical sequence of s contains min(s) and max(s). A
closer look reveals the following observation.

6

Observation 2.9.1. Let i? ..= min argmin(s) ∪ argmax(s) and k? ..= max argmin(s) ∪ argmax(s).

(i) If i? ∈ argmin(s) and k? ∈ argmax(s) or i? ∈ argmax(s) and k? ∈ argmin(s), then τ(s)
restricted to [i?..k?] is equal to s(i?), s(k?).

(ii) If {i?, k?} ⊆ argmin(s), then τ(s) restricted to [i?..k?] is equal to s(i?),max(s), s(k?).

(iii) If {i?, k?} ⊆ argmax(s), then τ(s) restricted to [i?..k?] is equal to s(i?),min(s), s(k?).

Let i? ..= min argmin(s) ∪ argmax(s) and k? ..= max argmin(s) ∪ argmax(s). Using Observa-
tion 2.9.1, it remains to determine the indices that induce the typical sequence on s[1..i?] and on
s[k?..n]. To find the indices that induce the typical sequence on s[1..i?], we will describe a marking
procedure that marks a set of indices satisfying the preconditions of Proposition 2.7. Next, we
observe that n − k? is the smallest index of any occurrence of min(s) or max(s) in the reverse
sequence of s, therefore a symmetric procedure, again using Proposition 2.7, yields the indices that
induce τ(s) on s[k?..n].

1 jmin ← argmin?(s[1..2]), jmax ← argmax?(s[1..2]), M ← {1}
2 for j = 3, . . . , i? do
3 if s(j) < s(jmin) then
4 jmin ← j
5 M ←M ∪ {jmax} // mark the current value of jmax

6 if s(j) > s(jmax) then
7 jmax ← j
8 M ←M ∪ {jmin} // mark the current value of jmin

9 M ←M ∪ {jmin, jmax}
Algorithm 1: The algorithm of Lemma 2.9 that computes the set M of indices that induce
the typical sequence of s between the first element and the first occurrence of the minimum
and maximum of s.

We execute Algorithm 1, which processes the integer sequence s[1..i?] from the first to the last
element, storing two counters jmin and jmax that store the leftmost position of the smallest and of
the greatest element seen so far, respectively. Whenever a new minimum is encountered, we mark
the current value of the index jmax, as this implies that s(jmax) has to be an element of the typical
sequence. Similarly, when encountering a new maximum, we mark jmin. These marked indices are
stored in a set M , which at the end of the algorithm contains the indices that induce τ(s) on [1..i?].
This, i.e., the correctness of the procedure, will now be argued via Proposition 2.7.

Claim 2.9.2. The set M of indices marked by the above procedure induce τ(s) on [1..i?].

Proof. LetM = {j0, j1, . . . , jt+1} be such that for all h ∈ [0..t], jh < jh+1. We prove that j0, . . . , jt+1

meet the preconditions of Proposition 2.7. First, we observe that the above algorithm marks both
the index 1 and index i?, in particular that j0 = 1 and jt+1 = i?.

We verify that the indices j0, . . . , jt+1 satisfy the property that for each h ∈ [0..(t+1)], the index
jh is the leftmost (i.e., smallest) index whose value is equal to s(jh): whenever an index is added
to the marked set, it is because in some iteration, the element at its position was either strictly
greater than the greatest previously seen element, or strictly smaller than the smallest previously
seen element. (This also ensures that s(j0), . . . , s(jt+1) are pairwise distinct.)

We additionally observe that if we have two indices `1 and `2 such that `2 is the index that the
algorithm marked right after it marked `1, then either `1 was jmin and `2 was jmax or vice versa:

7

jh jh+1

j∗ j∗ j∗

`

Figure 2: Illustration of the final argument in the proof of Claim 2.9.2. We assume that s(jh) < s(jh+1),
and mark the possible positions for j∗ = argmin?(s[1..jh+1]) with j∗ 6= jh.

when updating jmin, we mark jmax, and when updating jmax, we mark jmin. This lets us conclude
that when we have two indices jh, jh+1 such that s(jh) < s(jh+1), then jh was equal to jmin when
it was marked, and jh+1 was jmax when it was marked.

We are ready to prove that j0, . . . , jt+1 satisfy the precondition of Proposition 2.7. Suppose for
a contradiction that for some h ∈ [0..t+ 1], jh violates this property. Assume that s(jh) < s(jh+1)
and note that the other case is symmetric. The previous paragraph lets us conclude that jh was
equal to jmin when it was marked, and that jh+1 was jmax when it was marked.

We either have that jh 6= argmin?(s[1..jh+1]) or that jh+1 6= argmax?(s[1..jh+1]). Suppose the
latter holds. This immediately implies that there is some j∗ ∈ [jh+1− 1] such that s(j∗) > s(jh+1),
which implies that jmax would never have been set to jh+1 and hence jh+1 would have never
been marked. Suppose the former holds, i.e., jh 6= argmin?(s[1..jh+1]), for an illustration of the
following argument see Figure 2. Let j∗ ..= argmin?(s[1..jh+1]). If j∗ < jh, then at iteration jh,
s(jmin) ≤ s(jh), so jmin would never have been set to jh, and hence, jh would never have been
marked. We may assume that j∗ > jh. Since jh was marked, there is some ` > jh that triggered
jh being marked. This also means that at that iteration s(`) was greater than the previously
observed maximum, so we may assume that s(`) > s(jh). We also may assume that ` ≤ jh+1. If
j∗ ∈ [(jh + 1)..(`− 1)], then the algorithm would have updated jmin to j∗ in that iteration, before
marking jh, and for the case j∗ ∈ [(` + 1)..(jh+1 − 1)] we observe that ` 6= jh+1, and that the
algorithm would mark ` as the next index instead of jh+1. y

This establishes the correctness of the algorithm. We observe that each iteration takes O(1)
comparisons of numbers in s, and that there are O(n) iterations. �

We summarize several lemmas from [8] regarding integer sequences and typical sequences that
we will use in this work.

Lemma 2.10 (Bodlaender and Kloks [8]). Let r and s be two integer sequences.

(i) (Cor. 3.11 in [8]). We have that r ≺ s if and only if τ(r) ≺ τ(s).

(ii) (Lem. 3.13 in [8]). Suppose r and s are of the same length and let y = r+ s. Let r0 ≺ r and
s0 ≺ s. Then there is an integer sequence y0 ∈ r0 ⊕ s0 such that y0 ≺ y.

(iii) (Lem. 3.14 in [8]). Let q ∈ r ⊕ s. Then, there is an integer sequence q′ ∈ τ(r) ⊕ τ(s) such
that q′ ≺ q.

8

`

`

⊥

s t

Figure 3: A series parallel digraph G on the left, and a decomposition tree that yields G on the right.

(iv) (Lem. 3.15 in [8]). Let q ∈ r⊕s. Then, there is an integer sequence q′ ∈ r⊕s with τ(q′) = τ(q)
and l(q′) ≤ l(r) + l(s)− 1.

(v) (Lem. 3.19 in [8]). Let r′ and s′ be two more integer sequences. If r′ ≺ r and s′ ≺ s, then
r′ ◦ s′ ≺ r ◦ s.

2.2 Directed Acyclic Graphs

A directed graph (or digraph) G is a pair of a set of vertices V (G) and a set of ordered pairs of
vertices, called arcs, A(G) ⊆ V (G)×V (G). (If A(G) is a multiset, we call G multidigraph.) We say
that an arc a = (u, v) ∈ A(G) is directed from u to v, and we call u the tail of a and v the head of
a. A sequence of vertices v1, . . . , vr is called a walk in G if for all i ∈ [r − 1], (vi, vi+1) ∈ A(G). A
cycle is a walk v1, . . . , vr with v1 = vr and all vertices v1, . . . , vr−1 pairwise distinct. If G does not
contain any cycles, then we call G acyclic or a directed acyclic graph, DAG for short.

Let G be a DAG on n vertices. A topological order of G is a linear order π : V (G) → [n] such
that for all arcs (u, v) ∈ A(G), π(u) < π(v). We denote the set of all topological orders of G by
Π(G). We now define the width measures studied in this work. Note that we restrict the orders of
the vertices that we consider to topological orders.

Definition 2.11. Let G be a directed acyclic graph and let π ∈ Π(G) be a topological order of G.

(i) The cutwidth of π is cutw(π) ..= maxi∈[n−1]|{(u, v) ∈ A(G) | π(u) ≤ i ∧ π(v) > i}|.

(ii) The modified cutwidth of π is mcutw(π) ..= maxi∈[n]|{(u, v) ∈ A(G) | π(u) < i ∧ π(v) > i}|.

We define the cutwidth and modified cutwidth of a directed acyclic graph G as the minimum of
the respective measure over all topological orders of G.

We now introduce series parallel digraphs. Note that the following definition coincides with the
notion of ‘edge series-parallel multidigraphs’ in [25]. For an illustration see Figure 3.

Definition 2.12 (Series Parallel Digraph (SPD)). A (multi-)digraph G with an ordered pair
of distinct terminals (s, t) ∈ V (G)×V (G) is called series parallel digraph (SPD), often denoted by
(G, (s, t)), if one of the following hold.

(i) (G, (s, t)) is a single arc directed from s to t, i.e., V (G) = {s, t}, A(G) = {(s, t)}.

(ii) (G, (s, t)) can be obtained from two series parallel digraphs (G1, (s1, t1)) and (G2, (s2, t2)) by
one of the following operations.

9

(a) Series Composition. (G, (s, t)) is obtained by taking the disjoint union of G1 and G2,
identifying t1 and s2, and letting s = s1 and t = t2. In this case we write (G, (s, t)) =
(G1, (s1, t1)) •(G2, (s2, t2)) or simply G = G1 •G2.

(b) Parallel Composition. (G, (s, t)) is obtained by taking the disjoint union of G1 and G2,
identifying s1 and s2, and identifying t1 and t2, and letting s = s1 = s2 and t = t1 = t2.
In this case we write (G, (s, t)) = (G1, (s1, t1)) //(G2, (s2, t2)), or simply G = G1 //G2.

It is not difficult to see that each series parallel digraph is acyclic. One can naturally associate
a notion of decomposition trees with series parallel digraphs as follows. A decomposition tree T
is a rooted and ordered binary tree whose leaves are labeled with a single arc, and each internal
node t ∈ V (T) with left child ` and right child r is either a series node or a parallel node. We
then associate an SPD Gt with each node t ∈ V (T). If t is a leaf, then Gt is a single arc oriented
from one terminal to the other. If t is an internal node, then Gt is G` •Gr if t is a series node and
G` //Gr if t is a parallel node. It is clear that for each SPD G, there is a decomposition tree T with
root r such that G = Gr. In that case we say that T yields G. Valdes et al. [25] have shown that
one can decide in linear time whether a directed graph G is an SPD and if so, find a decomposition
tree that yields G.

Theorem 2.13 (Valdes et al. [25]). Let G be a directed graph on n vertices and m arcs. There
is an algorithm that decides in time O(n + m) whether G is a series parallel digraph and if so, it
outputs a decomposition tree that yields G.

3 The Merge Dominator Lemma

In this section we prove the main technical result of this work. It states that given two integer
sequences, one can find a merge that dominates all merges of those two sequences using linearly
many integer operations.

Lemma 3.1 (Merge Dominator Lemma). Let r and c be integer sequence of length m and n,
respectively. There exists a dominating merge of r and c, i.e., an integer sequence t ∈ r ⊕ c such
that t ≺ r ⊕ c, and this dominating merge can be computed using O(m+ n) integer operations.

Outline of the proof of the Merge Dominator Lemma. First, we show that we can restrict
our search to finding a dominating path in a matrix that, roughly speaking, contains all merges of r
and c of length at most l(r)+l(c)−1. The goal of this step is mainly to increase the intuitive insight
to the proofs in this section. Next, we prove the ‘Split Lemma’ (Lemma 3.7 in Subsection 3.2) which
asserts that we can obtain a dominating path in our matrix M by splitting M into a submatrix
M1 that lies in the ‘bottom left’ of M and another submatrix M2 in the ‘top right’ of M along a
minimum row and a minimum column, and appending a dominating path in M2 to a dominating
path in M1. In M1, the last row and column are a minimum row and column, respectively, and
in M2, the first row and column are a minimum row and column, respectively. This additional
structure will be exploited in Subsection 3.3 where we prove the ‘Chop Lemmas’ that come in two
versions. The ‘bottom version’ (Lemma 3.10) shows that in M1, we can find a dominating path by
repeatedly chopping away the last two rows or columns and remembering a vertical or horizontal
length-2 path. The ‘top version’ (Corollary 3.12) is the symmetric counterpart for M2. The proofs
of the Chop Lemmas only hold when r and c are typical sequences, and in Subsection 3.4 we present
the ‘Split-and-Chop Algorithm’ that computes a dominating path in a merge matrix of two typical
sequences. Finally, in Subsection 3.5, we generalize this result to arbitrary integer sequences, using
the Split-and-Chop Algorithm and one additional construction.

10

3.1 The Merge Matrix, Paths, and Non-Diagonality

Let us begin by defining the basic notions of a merge matrix and paths in matrices.

Definition 3.2 (Merge Matrix). Let r and c be two integer sequences of length m and n, respec-
tively. Then, the merge matrix of r and c is an m×n integer matrix M such that for (i, j) ∈ [m]×[n],
M [i, j] = r(i) + c(j).

We would like to point out that the following definition of a path in a matrix can be viewed as
a special case of the notion of lattice paths, see [22], or [14] for a related application.

Definition 3.3 (Path in a Matrix). Let M be an m × n matrix. A path in M is a sequence
p(1), . . . , p(`) of indices from M such that

(i) p(1) = (1, 1) and p(`) = (m,n), and

(ii) for h ∈ [`− 1], let p(h) = (i, j); then, p(h+ 1) ∈ {(i+ 1, j), (i, j + 1), (i+ 1, j + 1)}.

We denote by P(M) the set of all paths in M . A sequence p(1), . . . , p(`) that satisfies the second
condition but not necessarily the first is called a partial path in M . For two paths p, q ∈ P(M), we
may simply say that p dominates q, if M [p] dominates M [q].4 We also write p ≺ P(M) to express
that for each path q ∈ P(M), p ≺ q.

A (partial) path is called non-diagonal if the second condition is replaced by the following.

(ii)’ For h ∈ [`− 1], let p(h) = (i, j); then, p(h+ 1) ∈ {(i+ 1, j), (i, j + 1)}.

An extension e of a path p in a matrix M is as well a sequence of indices of M , and we again
denote the corresponding integer sequence by M [e]. A consequence of Lemma 2.10(i) and (iv) is
that we can restrict ourselves to all paths in a merge matrix when trying to find a dominating
merge of two integer sequences: it is clear from the definitions that in a merge matrix M of
integer sequences r and c, P(M) contains all merges of r and c of length at most l(r) + l(c) − 1.
Furthermore, suppose that there is a merge q ∈ r⊕ s such that q ≺ r⊕ s and l(q) > l(r) + l(s)− 1.
By Lemma 2.10(iv), there is a merge q′ ∈ r ⊕ s such that l(q′) ≤ l(r) + l(s)− 1, and τ(q′) = τ(q).
The latter yields τ(q′) ≡ τ(q) and therefore, by Lemma 2.10(i), q′ ≡ q, in particular, q′ ≺ q ≺ r⊕s.

Corollary 3.4. Let r and c be integer sequences and M be the merge matrix of r and c. There is
a dominating merge in r ⊕ c, i.e., an integer sequence t ∈ r ⊕ c such that t ≺ r ⊕ c, if and only if
there is a dominating path in M , i.e., a path p ∈ P(M) such that p ≺ P(M).

We now consider a type of merge that corresponds to non-diagonal paths in the merge matrix.
These merges will be used in a construction presented in Subsection 3.5, and in the algorithmic
applications of the Merge Dominator Lemma given in Section 4. For two integer sequences r and
s, we denote by r � s the set of all non-diagonal merges of r and s, which are not allowed to have
‘diagonal’ steps: we have that for all t ∈ r � s and all i ∈ [l(t) − 1], if t(i) = r(ir) + s(is), then
t(i+ 1) ∈ {r(ir + 1) + s(is), r(ir) + s(is + 1)}. As each non-diagonal merge directly corresponds to
a non-diagonal path in the merge matrix (and vice versa), we can consider a non-diagonal path in
a merge matrix to be a non-diagonal merge and vice versa. We now show that for each merge that
uses diagonal steps, there is always a non-diagonal merge that dominates it.

Lemma 3.5. Let r and s be two integer sequences of length m and n, respectively. For any merge
q ∈ r ⊕ s, there is a non-diagonal merge q′ ∈ r � s such that q′ ≺ q. Furthermore, given q, q′ can
be found using O(m+ n) integer operations.

4Recall that by (1) on page 4, for a (partial) path p in a matrix M , M [p] = M [p(1)],M [p(2)], . . . ,M [p(l(p))].

11

max(q)

m
in

n

1min

q

Figure 4: Situation in the proof of Lemma 3.6(i). The dot (light/dark) within each element of the corner
path py indicates with which elements of the path q it is ‘matched up’ in the extensions constructed in the
proof.

Proof. This can be shown by the following local observation. Let i ∈ [l(q) − 1] be such that
q(i), q(i + 1) is a diagonal step, i.e., there are indices ir ∈ [l(r) − 1] and is ∈ [l(s) − 1] such
that q(i) = r(ir) + s(is) and q(i + 1) = r(ir + 1) + s(is + 1). Then, we insert the element x ..=
min{r(ir) + s(is + 1), r(ir + 1) + s(is)} between q(i) and q(i+ 1). Since

x ≤ max{r(ir) + s(is), r(ir + 1) + s(is + 1)} =.. y,

we can repeat y twice in an extension of q so that one of the occurrences aligns with x, and we
have that in this position, the value of q′ is at most the value of the extension of q.

Let q′ be the sequence obtained from q by applying this operation to all diagonal steps, then
by the observation just made, we have that q′ ≺ q. It is clear that this can be implemented using
O(m+ n) integer operations. �

Next, we define two special paths in a matrix M that will reappear in several places throughout
this section. These paths can be viewed as the ‘corner paths’, where the first one follows the first
row until it hits the last column and then follows the last column (py(M)), and the second one
follows the first column until it hits the last row and then follows the last row (pp(M)). Formally,
we define them as follows:

py(M) ..= (1, 1), (1, 2), . . . , (1, n), (2, n), . . . , (m,n)

pp(M) ..= (1, 1), (2, 1) . . . , (m, 1), (m, 2), . . . , (m,n)

We use the shorthands ‘py’ for ‘py(M)’ and ‘pp’ for ‘pp(M)’ whenever M is clear from the context.
For instance, these paths appear in the following special cases of the Merge Dominator Lemma,

which will be useful for several proofs in this section.

Lemma 3.6. Let r and c be integer sequences of length m and n, respectively, and let M be the
merge matrix of r and c. Let i ∈ argmin(r) and j ∈ argmin(c).

(i) If i = 1 and j = n, then py dominates all paths in M , i.e., py ≺ P(M).

12

(ii) If i = m and j = 1, then pp dominates all paths in M , i.e., pp ≺ P(M).

Proof. (i) For an illustration of this proof see Figure 4. Let q be any path in M and let t∗ ..=
argmax?(q). Let furthermore q(t∗) = (t∗r , t

∗
c). We divide py and q in three consecutive parts each

to show that py dominates q.

- We let p1
y

..= py(1), . . . , py(t
∗
c − 1) and q1

..= q(1), . . . , q(t∗ − 1).

- We let p2
y

..= py(t
∗
c), . . . , py(n+ t∗r − 1) and q2

..= q(t∗).

- We let p3
y

..= py(n+ t∗r), . . . , py(m+ n− 1) and q3
..= q(t∗ + 1), . . . , q(l(q)).

Since r(1) is a minimum row in M , we have that for all (k, `) ∈ [m] × [n], M [1, `] ≤ M [k, `].
This implies that there is an extension e1 of p1

y of length t∗−1 such that M [e1] ≤M [q1]. To clarify,
the extension e1 can be obtained as follows. For each h ∈ [t∗ − 1], let q(h) = (hr, hc). Then, at
position h, e1 contains (1, hc). Since q is a path, e1 is indeed an extension of p1

y. Similarly, there is
an extension e3 of p3

y of length l(q)− t∗ such that M [e3] ≤M [q3]. Finally, let f2 be an extension of
q2 that repeats its only element, q(t∗), n − t∗c + t∗r times. Since M [q(t∗)] is the maximum element
on the sequence M [q] and r(1) is a minimum row and c(n) a minimum column in M , we have that
M [p2

y] ≤M [f2]: for all h ∈ [t∗c ..n], there is some hq ∈ [l(q)] such that q(hq) = (j, h) for some row j,
so M [py(h)] = M [1, h] ≤M [j, h] = M [q(hq)] ≤M [q(t∗)] (similarly for all h ∈ [n..(n+ t∗r − 1)]).

We define an extension e of py as e ..= e1 ◦p2
y ◦e3 and an extension f of q as f ..= q1 ◦f2 ◦q3. Note

that l(e) = l(f) = l(q) + n+ t∗r − (t∗c + 1), and by the above discussion, we have that M [e] ≤M [f].
(ii) follows from a symmetric argument. �

3.2 The Split Lemma

In this section we prove the first main step towards the Merge Dominator Lemma. It is fairly intu-
itive that a dominating merge has to contain the minimum element of a merge matrix. (Otherwise,
there is a path that cannot be dominated by that merge.) The Split Lemma states that in fact,
we can split the matrix M into two smaller submatrices, one that has the minimum element in
the top right corner, and one that has the minimum element in the bottom left corner, compute a
dominating path for each of them, and paste them together to obtain a dominating path for M .

Lemma 3.7 (Split Lemma). Let r and c be integer sequences of length m and n, respectively, and
let M be the merge matrix of r and c. Let i ∈ argmin(r) and j ∈ argmin(c). Let M1

..= M [1..i, 1..j]
and M2

..= M [i..m, j..n] and for all h ∈ [2], let ph ∈ P(Mh) be a dominating path in Mh, i.e.,
ph ≺ P(Mh). Then, p1 ◦ p2 is a dominating path in M , i.e., p1 ◦ p2 ≺ P(M).

Proof. Let q be any path in M . If q contains (i, j), then q has two consecutive parts, say q1 and
q2, such that q1 ∈ P(M1) and q2 ∈ P(M2). Hence, p1 ≺ q1 and p2 ≺ q2, so by Lemma 2.10(v),
p1 ◦ p2 ≺ q1 ◦ q2.

Now let p ..= p1 ◦ p2 and suppose q does not contain (i, j). Then, q either contains some (i, j′)
with j′ < j, or some (i′, j) with i′ < i. We show how to construct extensions of p and q that witness
that p dominates q in the first case, and remark that the second case can be shown symmetrically.
We illustrate this situation in Figure 5.

Suppose that q contains (i, j′) with j′ < j. We show that p ≺ q. First, q also contains some
(i′, j), where i′ > i. Let h1 be the index of (i, j′) in q, i.e., q(h1) = (i, j′), and h2 denote the index
of (i′, j) in q, i.e., q(h2) = (i′, j). We derive the following sequences from q.

- We let q1
..= q(1), . . . , q(h1) and q+

1
..= q1 ◦ (i, j′ + 1), . . . , (i, j).

13

M1

M2

p1

p2

q

M3

i

j

Figure 5: Situation in the proof of Lemma 3.7.

- We let q12
..= q(h1), . . . , q(h2).

- We let q2
..= q(h2), . . . , q(l(q)) and q+

2
..= (i, j), (i+ 1, j), . . . , (i′, j) ◦ q2.

Since q+
1 ∈ P(M1) and p1 ≺ P(M1), we have that p1 ≺ q+

1 , similarly that p2 ≺ q+
2 and

considering M3
..= M [i′..i, j..j′], we have by Lemma 3.6(i) that p12

..= py(M3) = (i, j′), (i, j′ +
1), . . . , (i, j), (i+ 1, j), . . . , (i′, j) dominates q12. Consequently, we consider the following extensions
of these sequences.

(I) We let e1 ∈ E(p1) and f1 ∈ E(q+
1) such that l(e1) = l(f1) and M [e1] ≤M [f1].

(II) We let e12 ∈ E(p12), and f12 ∈ E(q12) such that l(e12) = l(f12) and M [e12] ≤M [f12].

(III) We let e2 ∈ E(p2), and f2 ∈ E(q+
2) such that l(e2) = l(f2) and M [e2] ≤M [f2].

We construct extensions e′ ∈ E(p) and f ′ ∈ E(q). The idea of this construction is that we
stretch e1 ◦ e2, the extensions of p1 and p2 to obtain e′ and we stretch the extensions of the the
three parts of q, namely q1, q12, and q2, to obtain f ′ in such a way that the relations between these
extensions can be used to guarantee that in the end, M [e′] ≤M [f ′]. The most crucial step uses the
fact that q+

1 shares a horizontal subpath with p12 and that q+
2 shares a vertical subpath with p12.

Since q+
1 is a path in M1, p1 ≺ q+

1 , and since p12 ≺ q12 this allows for ‘transferring’ the domination
property of p1 over q+

1 to a part of q12, via the subpath that q+
1 shares with p12. Similar for the

other part of p12, using p2.
Let z be the last index in q of any element that is matched up with (i, j) in the extensions of

(II). (Following the proof of Lemma 3.6, this would mean z is the index of max(q12) in q.) We first
construct a pair of extensions e′j ∈ E(p1), and f ′j ∈ E(q[1..z]) with l(e′j) = l(f ′j) and M [e′j] ≤M [f ′j].
With a symmetric procedure, we can obtain extensions of p2 and of q[(z + 1)..l(q)], and use them
to obtain extensions of p = p1 ◦ p2 and q = q[1..z] ◦ q[(z + 1)..l(q)] witnessing that p ≺ q.

We give the details of the first part of the construction. Let a be the index of the last repetition
in f1 of q(h1 − 1), i.e., the index that appears just before q(h1) = (i, j′) in f1. We let e′j′−1[1..a] ..=
e1[1..a] and f ′j′−1[1..a] ..= f1[1..a]. By (I), M [e′j′−1] ≤M [f ′j′−1].

14

f12

e12

f1

e1

b1 bd

a1 ac

=
6

6 f ′x = f ′x−1 ◦

e′x = e′x−1 ◦

Figure 6: Constructing extensions in the proof of Lemma 3.7.

For x = j′, j′+1, . . . , j, we inductively construct e′x and f ′x using e′x−1 and f ′x−1, for an illustration
see Figure 6. We maintain as an invariant that l(e′x−1) = l(f ′x−1) and that M [e′x−1] ≤ M [f ′x−1].
Let a1, . . . , ac denote the indices of the occurrences of (i, x) in f1, and b1, . . . , bd denote the indices
of the occurrences of (i, x) in e12. If c = d, meaning that f1 and e12 repeat (i, x) the same number
of times, then we can append e1[a1..ac] to e′x−1 to obtain e′x and f12[b1..bd] to f ′x−1 to obtain f ′x.
This way, we append the same number of elements to e′x−1 and to f ′x−1; furthermore we know for
each α ∈ [a1..ac] and each β ∈ [b1..bd] that M [e1(α)] ≤ M [i, x] ≤ M [f12(β)] by the properties of
the extensions that we use. Therefore, M [e′x] ≤M [f ′x].

If c 6= d, then we repeat the last element of the shorter one of e1[a1..ac] and f12[b1..bd] the
corresponding number of times to obtain extensions of the same length. The argument that M [e′x] ≤
M [f ′x] after this step is the same as the one outlined in the previous case. Formally, we let:

e′x
..= e′x−1 ◦ e1[a1..ac] and f ′x

..= f ′x−1 ◦ f12[b1..bd], if c = d

e′x
..= e′x−1 ◦ e1[a1..ac] ◦

d−c times︷ ︸︸ ︷
e1(ac), . . . , e1(ac) and f ′x

..= f ′x−1 ◦ f12[b1..bd], if c < d

e′x
..= e′x−1 ◦ e1[a1..ac] and f ′x

..= f ′x−1 ◦ f12[b1..bd] ◦
c−d times︷ ︸︸ ︷

f12(bd), . . . , f12(bd), if c > d

In each case, we extended e′x−1 and f ′x−1 by the same number of elements; furthermore we know
by (I) that for y ∈ {a1, . . . , ac}, M [e1(y)] ≤M [f1(y)], by choice we have that for all y′ ∈ {b1, . . . , bd},
f1(y) = e12(y′) and we know that M [e12(y′)] ≤M [f12(y′)] by (II). Hence, M [e′x] ≤M [f ′x] in either
of the above cases. In the end of this process, we have e′j ∈ E(p1) and f ′j ∈ E(q[1..z]), and by
construction, l(e′j) = l(f ′j) and M [e′j] ≤M [f ′j]. �

3.3 The Chop Lemmas

Assume the notation of the Split Lemma. If we were to apply it recursively, it only yields a size
reduction whenever (i, j) /∈ {(1, 1), (m,n)}. Motivated by this issue, we prove two more lemmas
to deal with the cases when (i, j) ∈ {(1, 1), (m,n)}, and we coin them the ‘Chop Lemmas’. It will
turn out that when applied to typical sequences, a repeated application of these lemmas yields a
dominating path in M . This insight crucially helps in arguing that the dominating path in a merge
matrix can be found using linearly many integer operations. Before we present their statements
and proofs, we need another auxiliary lemma.

Lemma 3.8. Let r and c be two integer sequences of length 3 where for all s ∈ {r, c},

s(3) ≤ s(1) ≤ s(2).

15

0

∞

(a) Typical sequence ending in the minimum.

min

min2

max

m

m− 1

m− 2

m
in

m
in

2

m
ax

nn
−
1

n
−
2

M2

M1

(b) The general setting in Lemma 3.10.

Figure 7: Visual aides to the proof of Lemma 3.10.

Let L be the merge matrix of r and c. If L[1, 2] ≤ L[2, 1], then py(L) ≺ pp(L).

Proof. This can be witnessed by the following extensions e ∈ E(py(L)) and f ∈ E(pp(L)):

e : (1, 1), (1, 2), (1, 3), (2, 3), (3, 3), (3, 3), (3, 3)

f : (1, 1), (2, 1), (2, 1), (2, 1), (3, 1), (3, 2), (3, 3)

We argue that e ≤ f :

L[1, 2] ≤ L[2, 1] (by assumption)

L[1, 3] ≤ L[1, 2] ≤ L[2, 1] (since c(3) ≤ c(2) and by assumption)

L[2, 3] ≤ L[2, 1] (since c(3) ≤ c(1))

∀i ∈ [3] : L[3, 3] ≤ L[3, i] (since c(3) ≤ c(1) ≤ c(2)) �

Remark 3.9. We would like to stress that up to this point, all results in this section were shown in
terms of arbitrary integer sequences. For the next lemma, we require the sequences considered to be
typical sequences. In Subsection 3.5 we will generalize the results that rely on the following lemmas
to arbitrary integer sequences. The generalization to arbitrary integer sequences is necessary for
the applications in Section 4, since the integer sequences arising there are in general not typical
sequences.

We are now ready to prove the Chop Lemmas for typical sequences. They come in two versions,
one that is suited for the case of the bottom left submatrix after an application of the Split Lemma
to M , and one for the top right submatrix. In the former case, we have that the last row is
a minimum row and that the last column is a minimum column. We will prove this lemma in
more detail and observe that the other case follows by symmetry with the arguments given in the
following proof. For an illustration of the setting in the following lemma, see Figure 7b.

16

Lemma 3.10 (Chop Lemma - Bottom). Let r and c be typical sequences of length m ≥ 3 and
n ≥ 3, respectively, and let M be the merge matrix of r and c. Suppose that m ∈ argmin(r) and
n ∈ argmin(c) and let M1

..= M [1..(m− 2), 1..n] and M2
..= M [1..m, 1..(n− 2)] and for all h ∈ [2],

let ph ≺ P(Mh). Let p+
1

..= p1 ◦ (m− 1, n), (m,n) and p+
2

..= p2 ◦ (m,n− 1), (m,n).

(i) If M [m− 2, n− 1] ≤M [m− 1, n− 2], then p+
1 ≺ P(M).

(ii) If M [m− 1, n− 2] ≤M [m− 2, n− 1], then p+
2 ≺ P(M).

Proof. Let s ∈ {r, c}. Since s is a typical sequence and l(s) ∈ argmin(s), we know by Corollary 2.8
that for all k ∈ [bl(s)/2c],

l(s)− 2k + 1 ∈ argmax(s[1..(l(s)− 2k + 1)]) and l(s)− 2k ∈ argmin(s[1..(l(s)− 2k)]).

Informally speaking, this means that the last element of s is the minimum, the (l(s) − 1)-th
element of s is the maximum, the (l(s) − 2)-th element is ‘second-smallest’ element, and so on.
We will therefore refer to the element at position l(s) − 2k (2k ≤ l(s)) as ‘mink+1(s)’ (note that
the minimum is achieved when k = 0, hence the ‘+1’), and elements at position l(s) − 2k + 1
(2k + 1 ≤ l(s) − 1) as ‘maxk(s)’. For an illustration of the shape of s see Figure 7a and for an
illustration of the general setting of this proof see Figure 7b. We prove (i) and remark that the
argument for (ii) is symmetric.

First, we show that each path in M is dominated by at least one of p+
1 and p+

2 .

Claim 3.10.1. Let q ∈ P(M). Then, for some r ∈ [2], p+
r ≺ q.

Proof. We may assume that q does not contain (m−1, n−1): if so, we could easily obtain a path q′

from q by some local replacements such that q′ dominates q, since M [m− 1, n− 1] is the maximum
element of the matrix M . We may assume that q either contains (m− 1, n) or (m,n− 1). Assume
that the former holds, and note that an argument for the latter case can be given analogously.
Since q contains (m − 1, n), and since q does not contain (m − 1, n − 1), we may assume that q
contains (m − 2, n): if not, we can simply add (m − 2, n) before (m − 1, n) to obtain a path that
dominates q (recall that n is the column indexed by the minimum of c). Now, let q|M1 be the
restriction of q to M1, we then have that q = q|M1 ◦ (m− 1, n), (m,n). Since p1 dominates all paths
in M1, it dominates q|M1 and so p+

1 ≺ q. y

The remainder of the proof is devoted to showing that p+
1 dominates p+

2 which yields the
lemma by Claim 3.10.1 and transitivity. To achieve that, we will show in a series of claims that
we may assume that p2 contains (m− 2, n− 2). In particular, we show that if p2 does not contain
(m− 2, n− 2), then there is another path in M2 that does contain (m− 2, n− 2) and dominates p2.

Claim 3.10.2. We may assume that there is a unique j ∈ [n− 2] such that p2 contains (m− 1, j).

Proof. Clearly, p2 has to pass through the row m− 1 at some point. We show that we may assume
that there is a unique such point. Suppose not and let j1, . . . , jt be such that p2 contains all
(m − 1, ji), where i ∈ [t]. By the definition of a path in a matrix, we have that ji+1 = ji + 1 for
all i ∈ [t − 1]. Let p′2 be the path obtained from p2 by replacing, for each i ∈ [t − 1], the element
(m−1, ji) with the element (m−2, ji). Since r(m−2) ≤ r(m−1) (recall that m−1 ∈ argmax(r)),
it is not difficult to see that p′2 dominates p2, and clearly, p′2 satisfies the condition of the claim. y

Claim 3.10.3. Let j ∈ [n− 3] be such that p2 contains (m− 1, j). If j = n− 2k+ 1 for some k ∈ N
with 2k + 1 ≤ n− 1, then there is a path p′2 that dominates p2 and contains (m− 1, j + 1).

17

min

min2

max

m

m− 1

m− 2
m
in

k

m
ax

k

j
+
1

j

(a) Situation of Claim 3.10.3.

min

min2

max

m

m− 1

m− 2

m
in

k
−
1

m
in

k

m
ax

k
−
1

j
+
2

j
+
1

j L

(b) Situation of Claim 3.10.4.

Figure 8: Visualization of the arguments that lead to the conclusion that we may assume that p2 contains
(m− 2, n− 2) in the proof of Lemma 3.10.

Proof. For an illustration see Figure 8a. First, by Claim 3.10.2, we may assume that j is unique.
Moreover, since j = n− 2k+ 1 and j+ 1 = n− 2k+ 2 = n− 2(k− 1), we have that c(j) = maxk(c)
and c(j+ 1) = mink(c), respectively, and therefore c(j+ 1) ≤ c(j). Hence, we may assume that the
element after (m − 1, j) in p2 is (m, j + 1): if p2 contained (m, j) we could simply remove (m, j)
from p2 without changing the fact that p2 is a dominating path since M [m, j] > M [m, j + 1]. We
modify p2 as follows. We remove (m−1, j), and add (m−2, j) (if not already present), followed by
(m− 2, j+ 1) and then (m− 1, j+ 1). For each x ∈ {M [m− 2, j],M [m− 2, j+ 1],M [m− 1, j+ 1]},
we have that x < M [m − 1, j] (recall that r(m − 2) < r(m − 1) and c(j + 1) < c(j)). Hence, the
resulting path dominates p2 and it contains (m− 1, j + 1). y

Claim 3.10.4. Let j ∈ [n − 4] be such that p2 contains (m − 1, j). If j = n − 2(k − 1) for some
k ∈

[
3..
⌊
n
2

⌋]
, then there is a path p′2 that dominates p2 and contains (m− 1, j + 2).

Proof. For an illustration see Figure 8b. Again, by Claim 3.10.2, we may assume that j is unique.
Since j = n − 2(k − 1), we have that c(j) = mink(c). First, if not already present, we insert
(m− 2, j) just before (m− 1, j) in p2. This does not change the fact that p2 is a dominating path,
since M [m − 2, j] < M [m − 1, j] (recall that r(m − 2) < r(m − 1)). Next, consider the 3 × 3
submatrix L ..= M [(m− 2)..m, j..(j+ 2)]. Note that L is the submatrix of M restricted to the rows
min(r), max(r), and min2(r), and the columns mink(c), maxk−1(c), and mink−1(c). Furthermore,
we may assume that p2 restricted to L is equal to pp(L): We know that p2 contains (m− 2, j) and
(m− 1, j), and with Claim 3.10.2, by which we can assume that p2 contains no other element from
row m− 1, we can derive that the next element in p2 is (m, j) or (m, j + 1). In the latter case we
can insert (m, j) before (m, j + 1) since M [m, j] ≤M [m, j + 1].

We show that py(L) dominates pp(L), from which we can conclude that we can obtain a path p′2
from p2 that contains (m−1, j+2) and dominates p2 by replacing pp(L) with py(L). By Lemma 3.8,
it suffices to show that M [m− 2, j+ 1] ≤M [m− 1, j], in other words, that maxk−1(c) + min2(r) ≤
max(r) + mink(c).

By the assumption of the lemma, we have that M [m− 2, n− 1] ≤M [m− 1, n− 2], hence,

max(c) + min2(r) ≤ max(r) + min2(c), and so: max(c)−min2(c) ≤ max(r)−min2(r).

18

Next, we have that for all j ∈ [bn/2c],

max(c)−min2(c) ≥ maxj(c)−minj+1(c).

Putting the two together, we have that

maxk−1(c)−mink(c) ≤ max(r)−min2(r), and so: maxk−1(c) + min2(r) ≤ max(r) + mink(c),

which concludes the proof of the claim. y

We are now ready to conclude the proof.

Claim 3.10.5. p+
1 ≺ p

+
2 .

Proof. By repeated application of Claims 3.10.3 and 3.10.4, we know that there is a path p′2 in
M2 that contains (m − 1, n − 2) and such that p′2 ≺ p2. Furthermore, we may assume that p′2
contains (m − 2, n − 2) as well: we can simply add this element if it is not already present; since
M [m − 2, n − 2] ≤ M [m − 1, n − 2], this does not change the property that p′2 ≺ p2. Now, let p′′2
be the subpath of p′2 ending in (m− 2, n− 2). (Note that p′′2 ◦ (m− 2, n− 1), (m− 2, n) ∈ P(M1).)
Then, the following hold:

p+
1 ≺ p

′′
2 ◦ (m− 2, n− 1), (m− 2, n), (m− 1, n), (m,n) (3)

≺ p′2 ◦ (m,n− 1), (m,n) (4)

≺ p+
2 (5)

Here, (3) is due to p1 ≺ P(M1) and therefore p1 ≺ p′′2 ◦ (m − 2, n − 1), (m − 2, n). Next, (5) is
guaranteed since p′2 ≺ p2. We justify (4) as follows: Let L ..= M [(m − 2)..m, (n − 2)..n]. Then,
p′′2 ◦ (m− 2, n− 1), (m− 2, n), (m− 1, n), (m,n) restricted to L is py(L) and p′ ◦ (m,n− 1), (m,n)
restricted to L is pp(L). Since L[1, 2] = M [m − 2, n − 1] ≤ M [m − 1, n − 2] = L[2, 1] by the
assumption of this lemma (Lemma 3.10) we know that py(L) ≺ pp(L) by Lemma 3.8. y

This concludes the proof of (i) and (ii) can be shown symmetrically. �

As the previous lemma always assumes that m ≥ 3 and n ≥ 3, we observe the corresponding
base case which occurs when either m ≤ 2 or n ≤ 2. This base case is justified by the observation
that in the bottom case, the last row and column of M are minimum.

Observation 3.11 (Base Case - Bottom). Let r and c be typical sequences of length m and n,
respectively, and let M be the merge matrix of r and c. Suppose that m ∈ argmin(r) and
n ∈ argmin(c). If m ≤ 2 (n ≤ 2), then5

p∗ ..= (1, 1), (m, 1), (m, 2), . . . , (m,n) (p∗ ..= (1, 1), (1, n), (2, n), . . . , (m,n))

dominates P(M), i.e., p∗ ≺ P(M).

By symmetry, we have the following consequence of Lemma 3.10.

5Note that in the following equation, if m = 1, then strictly speaking we would have that p∗ repeats the element
(1, 1) twice which is of course not our intention. For the sake of a clear presentation though, we will ignore this slight
abuse of notation, also in similar instances throughout this section.

19

Input : Typical sequences r(1), . . . , r(m) and c(1), . . . , c(n)
Output: A dominating merge of r and c

1 Let i ∈ argmin(r) and j ∈ argmin(c);
2 return Chop-bottom (r[1..i], c[1..j]) ◦ Chop-top (r[i..m], c[j..n]);
3 Procedure Chop-bottom(r and c as above)
4 if m ≤ 2 then return r(1) + c(1), r(m) + c(1), r(m) + c(2), . . ., r(m) + c(n);
5 if n ≤ 2 then return r(1) + c(1), r(1) + c(n), r(2) + c(n), . . ., r(m) + c(n);
6 if r(m− 2) + c(n− 1) ≤ r(m− 1) + c(n− 2) then return

Chop-bottom(r[1..(m− 2)], c) ◦ (r(m− 1) + c(n)), r(m) + c(n);
7 if r(m− 1) + c(n− 2) ≤ r(m− 2) + c(n− 1) then return

Chop-bottom(r, c[1..(n− 2)]) ◦ (r(m) + c(n− 1)), r(m) + c(n);

8 Procedure Chop-top(r and c as above)
9 if m ≤ 2 then return r(1) + c(1), r(1) + c(2), . . ., r(1) + c(n), r(m) + c(n);

10 if n ≤ 2 then return r(1) + c(1), r(2) + c(1), . . ., r(m) + c(1), r(m) + c(n);
11 if r(3) + c(2) ≤ r(2) + c(3) then return r(1) + c(1), (r(2) + c(1))◦Chop-top(r[3..m], c);
12 if r(2) + c(3) ≤ r(3) + c(2) then return r(1) + c(1), (r(1) + c(2)) ◦ Chop-top(r, c[3..n]);

Algorithm 2: The Split-and-Chop Algorithm

Corollary 3.12 (Chop Lemma - Top). Let r and c be typical sequences of length m ≥ 3 and
n ≥ 3, respectively, and let M be the merge matrix of r and c. Suppose that 1 ∈ argmin(r)
and 1 ∈ argmin(c) and let M1

..= M [3..m, 1..n] and M2
..= M [1..m, 3..n] and for all h ∈ [2], let

ph ≺ P(Mh). Let p+
1

..= (1, 1), (2, 1) ◦ p1 and p+
2

..= (1, 1), (1, 2) ◦ p2.

(i) If M [3, 2] ≤M [2, 3], then p+
1 ≺ P(M).

(ii) If M [2, 3] ≤M [3, 2], then p+
2 ≺ P(M).

Again, we observe the corresponding base case.

Observation 3.13 (Base Case - Top). Let r and c be typical sequences of length m and n, respec-
tively, and let M be the merge matrix of r and c. Suppose that 1 ∈ argmin(r) and 1 ∈ argmin(c).
If m ≤ 2 (n ≤ 2), then

p∗ ..= (1, 1), (1, 2), . . . , (1, n), (m,n) (p∗ ..= (1, 1), (2, 1), . . . , (m, 1), (m,n))

dominates P(M), i.e., p∗ ≺ P(M).

3.4 The Split-and-Chop Algorithm

Equipped with the Split Lemma and the Chop Lemmas, we are now ready to give the algorithm
that computes a dominating merge of two typical sequences. Consequently, we call this algorithm
the ‘Split-and-Chop Algorithm’.

Lemma 3.14. Let r and c be typical sequences of length m and n, respectively. Then, there is
an algorithm that finds a dominating path in the merge matrix of r and c using O(m+ n) integer
operations.

Proof. The algorithm practically derives itself from the Split Lemma (Lemma 3.7) and the Chop
Lemmas (Lemma 3.10 and Corollary 3.12). However, to make the algorithm run in the claimed

20

r

τ(r)

s

τ(s)

· · ·
Figure 9: Illustration of the typical lift. On the left side, the view of the merge matrix M , with the rows
and columns corresponding to elements of the typical sequences highlighted. Inside there, Mτ can be seen
as a highlighted submatrix. The merge t′ is depicted as the large highlighted squares within Mτ and the
small highlighted squares outside of Mτ show its completion to the typical lift of t. On the right side, an
illustration that does not rely on the ‘matrix view’.

bound, we are not able to construct the merge matrix of r and c. This turns out to be not necessary,
as we can simply read off the crucial values upon which the recursion of the algorithm depends
from the sequences directly. The details are given in Algorithm 2.

The number of integer operations in the Chop-subroutines can be computed as T (m + n) ≤
T (m+ n− 2) +O(1), which resolves to O(m+ n). Correctness follows from Lemmas 3.7 and 3.10
and Corollary 3.12 with the base cases given in Observations 3.11 and 3.13. �

3.5 Generalization to Arbitrary Integer Sequences

In this section we show how to generalize Lemma 3.14 to arbitrary integer sequences. In particular,
we will show how to construct from a merge of two typical sequences τ(r) and τ(s) that dominates
all of their merges, a merge of r and s that dominates all merges of r and s. The claimed result then
follows from an application of Lemma 3.14. We illustrate the following construction in Figure 9.

The Typical Lift. Let r and s be integer sequences and let t ∈ τ(r) ⊕ τ(s). Then, the typical
lift of t, denoted by ρ(t), is an integer sequence ρ(t) ∈ r ⊕ s, obtained from t as follows. For
convenience, we will consider ρ(t) as a path in the merge matrix M of r and s.

Step 1. We construct t′ ∈ τ(r)�τ(s) such that t′ ≺ t using Lemma 3.5. Throughout the following,
consider t′ to be a path in the merge matrix Mτ of τ(r) and τ(s).

Step 2. First, we initialize ρ1
t

..= t′(1) = (1, 1). For i = {2, . . . , l(t′)}, we proceed inductively as
follows. Let (ir, is) = t(i) and let (i′r, i

′
s) = t(i− 1). (Note that t(i− 1) and t(i) are indices in

Mτ .) Let furthermore (jr, js) be the index in M corresponding to (ir, is), and let (j′r, j
′
s) be

the index in M corresponding to (i′r, i
′
s). Assume by induction that ρi−1

t ∈ P(M [1..j′r, 1..j
′
s]).

We show how to extend ρi−1
t to a path in ρit in M [1..jr, 1..js]. Since t′ is non-diagonal, we

have that (i′r, i
′
s) ∈ {(ir − 1, is), (ir, is − 1)}, so one of the two following cases applies.

Case S2.1 (i′r = ir − 1 and i′s = is). In this case, we let ρit
..= ρi−1

t ◦ (j′r + 1, js), . . . , (jr, js).

Case S2.2 (i′r = ir and i′s = is − 1). In this case, we let ρit
..= ρi−1

t ◦ (jr, j
′
s + 1), . . . , (jr, js).

Step 3. We return ρ(t) ..= ρ
l(t′)
t .

21

Furthermore, it is readily seen that the typical lift contains no diagonal steps: we obtain it
from a non-diagonal path in the merge matrix of τ(r) and τ(s) by inserting vertical and horizontal
paths from the merge matrix of r and s between consecutive elements. Moreover, it is computable
using linearly many integer operations, with Step 1 taking linearly many integer operations by
Lemma 3.5. We summarize in the following observation.

Observation 3.15. Let r and s be integer sequences of length m and n, respectively, and let t ∈
τ(r)⊕ τ(s). Then, ρ(t) ∈ r � s, and ρ(t) can be computed using O(m+ n) integer operations.

We now show that if t ∈ τ(r)⊕ τ(s) dominates all merges of τ(r) and τ(s), then the typical lift
of t dominates all merges of r and s.

Lemma 3.16. Let r and s be integer sequences and let q ∈ r ⊕ s. Let t ∈ τ(r) ⊕ τ(s) such that
t ≺ τ(r)⊕ τ(s). Then, ρ(t) ≺ q.

Proof. Let t′ ∈ τ(r)� τ(s) be the non-diagonal merge such that t′ ≺ t used in the construction of
ρ(t). We argue that ρ(t) ≺ t′. To see this, let M be the merge matrix of r and s and consider any
(j′r, j

′
s) and (jr, js) as in Step 2, and suppose that j′s = js. (Note that either j′s = js or j′r = jr.) As

the only elements of the typical sequence of r in [j′r..jr] are r(j′r) and r(jr), we know that either for
all hr ∈ [j′r..jr], r(j

′
r) ≤ r(hr) ≤ r(jr), or for all hr ∈ [j′r..jr], r(j

′
r) ≥ r(hr) ≥ r(jr). Therefore, in

an extension of t′, we can repeat the index that yields max{M [j′r, js],M [jr, js]} sufficiently many
(i.e., jr − j′r) times to ensure that the value of the extension of t′ is an upper bound for all values
of ρ(t) in these positions.

To finish the proof, we have by Lemma 2.10(iii) that there exists a q′ ∈ τ(r) ⊕ τ(s) such that
q′ ≺ q. Since t ≺ τ(r)⊕ τ(s), we can conclude:

ρ(t) ≺ t′ ≺ t ≺ q′ ≺ q. �

We wrap up and prove the Merge Dominator Lemma (Lemma 3.1), stated here in the slightly
stronger form that the dominating merge is non-diagonal (which is necessary for the applications
in Section 4).

Lemma 3.17 (Merge Dominator Lemma). Let r and c be integer sequence of length m and
n, respectively. There exists a dominating non-diagonal merge of r and c, i.e., an integer sequence
t ∈ r � c such that t ≺ r ⊕ c, and this dominating merge can be computed using O(m+ n) integer
operations.

Proof. The algorithm proceeds in the following steps.

Step 1. Compute τ(r) and τ(c).

Step 2. Apply the Split-and-Chop Algorithm on input (τ(r), τ(c)) to obtain t ≺ τ(r)⊕ τ(c).

Step 3. Return the typical lift ρ(t) of t.

Correctness of the above algorithm follows from Corollary 3.4 and Lemmas 3.14 and 3.16 which
together guarantee that ρ(t) ≺ r ⊕ c, and by Observation 3.15, ρ(t) is a non-diagonal merge, i.e.,
ρ(t) ∈ r�c. By Lemma 2.9, Step 1 can be done using O(m+n) integer operations, by Lemma 3.14,
Step 2 takes O(m + n) integer operations as well, and by Observation 3.15, the typical lift of t
can also be computed using O(m + n) integer operations. Hence, the overall number of integer
operations needed is O(m+ n). �

22

4 Directed Width Measures of Series Parallel Digraphs

In this section, we give algorithmic consequences of the Merge Dominator Lemma. In Subsec-
tion 4.1, we provide a polynomial time algorithm that computes the (weighted) cutwidth of (arc-
weighted) series parallel digraphs. In Subsection 4.2 we provide a linear time transformation that
allows for computing the modified cutwidth of an SPD on n vertices in polynomial time using the
algorithm that computes the weighted cutwidth of an arc-weighted SPD.

4.1 Cutwidth

Recall that given a topological order v1, . . . , vn of a directed acyclic graph G, its cutwidth is the
maximum over all i ∈ [n − 1] of the number of arcs that have their tail vertex in {v1, . . . , vi} and
their head vertex in {vi+1, . . . , vn}, and that the cutwidth of G is the minimum cutwidth over all its
topological orders. To give the algorithm for the corresponding Cutwidth of Series Parallel
Digraphs problem, we consider a generalized version where the input digraph has edge weights
and we want to find a topological order that minimizes the weighted cutwidth.

Definition 4.1. Let G be a directed acyclic graph and ω : A(G) → N be a weight function.6 For
a topological order π ∈ Π(G) of G, the weighted cutwidth of (π, ω) is defined as

wcutw(π, ω) ..= maxi∈[n−1]

∑
(v,w)∈A(G)

π(v)≤i,π(w)>i

ω(v, w),

and the weighted cutwidth of (G,ω) is wcutw(G,ω) ..= minπ∈Π(G) wcutw(π, ω).

The corresponding computational problem is defined as follows.

Input: A series parallel digraph G and an arc-weight function ω : A(G)→ N.
Question: What is the weighted cutwidth of (G,ω)?

Weighted Cutwidth of Series Parallel Digraphs

The Cutwidth of Series Parallel Digraphs problem is the special case of the Weighted
Cutwidth of Series Parallel Digraphs problem where all arcs have weight 1. Throughout
this section, we refer to arc-weighted directed acyclic graphs simply as weighted directed acyclic
graphs.

Given a weighted series parallel digraph (G,ω), our algorithm follows a bottom-up dynamic
programming scheme along the decomposition tree T that yields G. Each node t ∈ V (T) has a
subgraph Gt of G associated with it, that is also series parallel. Naturally, we use the property
that Gt is obtained either via series or parallel composition of the SPD’s associated with its two
children.

To make this problem amenable to be solved using merges of integer sequences, we define the
following notion of a cut-size sequence of a topological order of a directed acyclic graph which
records for each position in the order, how many arcs cross it.

Definition 4.2 (Cut-Size Sequence). Let (G,ω) be a weighted directed acyclic graph on n ver-
tices and let π ∈ Π(G) be a topological order of G. The sequence x(1), . . . , x(n − 1), where for
i ∈ [n− 1],

x(i) =
∑

(u,v)∈A(G)

π(u)≤i,π(v)>i

ω(u, v),

6For an arc (v, w), we use the shorthand ‘ω(v, w)’ for ‘ω((v, w))’.

23

is the cut-size sequence of π, and denoted by σ(π). For a set of topological orders Π′ ⊆ Π(G), we
let σ(Π′) ..= {σ(π) | π ∈ Π′}.

Throughout the remainder of this section, we slightly abuse notation: If G1 and G2 are SPD’s
that are being composed with a series composition, and π1 ∈ Π(G1) and π2 ∈ Π(G2), then we
consider π = π1 ◦ π2 to be the concatenation of the two topological orders where t2 = s1 only
appears once in π. Moreover, to simplify notation, we consider the weight function of the given
SPD only implicitly in places where it does not crucially influence the arguments.

We first argue via two simple observations that when computing the weighted cutwidth of a
weighted series parallel digraph G by following its decomposition tree in a bottom up manner, we
only have to keep track of a set of topological orders that induce a set of cut-size sequences that
dominate all cut-size sequences of G.

Observation 4.3. Let G be a weighted DAG and π, λ ∈ Π(G). If σ(π) ≺ σ(λ), then wcutw(π) ≤
wcutw(λ).

This is simply due to the fact that σ(π) ≺ σ(λ) implies that max(σ(π)) ≤ max(σ(λ)). Next, if
G is obtained from G1 and G2 via series or parallel composition, and we have π1, λ1 ∈ Π(G1) such
that σ(π1) ≺ σ(λ1), then it is always beneficial to choose π1 over λ1, and λ1 can be disregarded.

Observation 4.4. Let G be a weighted SPD that is obtained via series or parallel composition from
weighted SPD’s G1 and G2. Let π1, λ1 ∈ Π(G1) be such that σ(π1) ≺ σ(λ1). Let π, λ ∈ Π(G) be
such that π|V (G1) = π1, λ|V (G1) = λ1, and for all v ∈ V (G2), π(v) = λ(v). Then, σ(π) ≺ σ(λ).

The previous observation is justified as follows. Let σ(π) = x(1), . . . , x(n − 1) and σ(λ) =
y(1), . . . , y(n − 1). Then, for each i ∈ [n − 1], the arcs of G2 contribute equally to the values x(i)
and y(i) (in particular since G1 and G2 are arc-disjoint). Therefore, we can use extensions of σ(π1)
and σ(λ1) that witnesses that σ(π1) ≺ σ(λ1) to construct extensions of σ(π) and σ(λ) that witness
that σ(π) ≺ σ(λ).

The following lemma states that the cut-size sequences of a weighted SPD G can be computed
by pairwise concatenation or non-diagonal merging (depending on whether G is obtained via series
or parallel composition) of the two smaller SPD’s that G is obtained from. Intuitively speaking,
the reason why we can only consider non-diagonal merges is the following. When G is obtained
from G1 and G2 via parallel composition, then each topological order of G can be considered the
‘merge’ of a topological order of G1 and one of G2, where each position (apart from the first and
the last) contains a vertex either from G1 or from G2. Now, in a merge of a cut-size sequence of
G1 with a cut-size sequence of G2, a diagonal step would essentially mean that in some position,
we insert both a vertex from G1 and a vertex of G2; this is of course not possible.

Lemma 4.5. Let G1 and G2 be weighted SPD’s. Then the following hold.

(i) σ(Π(G1 •G2)) = σ(Π(G1))� σ(Π(G2)).

(ii) σ(Π(G1 //G2)) = σ(Π(G1))� σ(Π(G2)).

Proof. (i). Let σ(π) ∈ σ(Π(G1 •G2)) be such that π is a topological order of G1 •G2. Then, π
consists of two contiguous parts, namely π1

..= π|V (G1) ∈ Π(G1) followed by π2
..= π|V (G2) ∈ Π(G2).

Since there are no arcs from V (G1) \ {t1} to V (G2) \ {s2}, we have that σ(π) = σ(π1) ◦ σ(π2) ∈
σ(Π(G1))� σ(Π(G2)). The other inclusion follows similarly.

(ii). Let σ(π) ∈ σ(Π(G1 //G2)) be such that π is a topological order of G1 //G2. Let π1
..=

π|V (G1) and π2
..= π|V (G2). It is clear that π1 ∈ Π(G1) and that π2 ∈ Π(G2). Let σ(π) =

24

x(1), . . . , x(n − 1), σ(π1) = y1(1), . . . , y1(n1 − 1), and σ(π2) = y2(1), . . . , y2(n2 − 1). For any
i ∈ {1, . . . , n−1}, let i1 be the maximum index such that π(π−1

1 (i1)) ≤ i, and define i2 accordingly.
Then, the set of arcs that cross the cut between positions i and i + 1 in π is the union of the
set of arcs crossing the cut between positions i1 and i1 + 1 in π1 and the set of arcs crossing
the cut between positions i2 and i2 + 1 in π2. Since G1 and G2 are arc-disjoint, this means that
x(i) = y1(i1) + y2(i2). Together with the observation that each vertex at position i+ 1 < n in π is
either from G1 or from G2, we have that

x(i+ 1) ∈ {y1(i1 + 1) + y2(i2), y1(i1) + y2(i2 + 1)},

in other words, we have that σ(π) ∈ σ(π1)�σ(π2) ⊆ σ(Π(G1))�σ(Π(G2)). The other inclusion can
be shown similarly, essentially using the fact that we are only considering non-diagonal merges. �

We now prove the crucial lemma of this section which states that we can compute a dominating
cut-size sequence of a weighted SPD G from dominating cut-size sequences of the smaller weighted
SPD’s that G is obtained from. For technical reasons, we assume in the following lemma that G
has no parallel arcs.

Lemma 4.6. Let G be a weighted SPD without parallel arcs. Then there is a topological order
π∗ of G such that σ(π∗) dominates all cut-size sequences of G. Moreover, the following hold. Let
G1 and G2 be weighted SPD’s and for r ∈ [2], let π∗r be a topological order of Gr such that σ(π∗r)
dominates all cut-size sequences of Gr.

(i) If G = G1 •G2, then π∗ = π∗1 ◦ π∗2.

(ii) If G = G1 //G2, then π∗ can be found as the topological order of G such that σ(π∗) dominates
σ(π∗1)� σ(π∗2).

Proof. We prove the lemma by induction on the number of vertices of G. If |V (G)| = 2, then the
claim is trivially true (there is only one topological order). Suppose that |V (G)| =.. n > 2. Since
n > 2 and G has no parallel arcs, we know that G can be obtained from two SPD’s G1 and G2 via
series or parallel composition with |V (G1)| =.. n1 < n and |V (G2)| =.. n2 < n. By the induction
hypothesis, for r ∈ [2], there is a unique topological order π∗r such that σ(π∗r) dominates all cut-size
sequences of Gr.

Suppose G = G1 •G2. Since σ(π∗1) dominates all cut-size sequences of G1 and σ(π∗2) dominates
all cut-size sequences of G2, we can conclude using Lemma 2.10(v) that σ(π∗1) ◦ σ(π∗2) dominates
σ(Π(G1))�σ(Π(G2)) which together with Lemma 4.5(i) allows us to conclude that σ(π∗1)◦σ(π∗2) =
σ(π∗1 ◦ π∗2) dominates all cut-size sequences of G. This proves (i).

Suppose that G = G1 //G2, and let π∗ be a topological order of G such that σ(π∗) dominates
σ(π∗1) � σ(π∗2). We show that σ(π∗) dominates σ(Π(G)). Let π ∈ Π(G). By Lemma 4.5(ii), there
exist topological orders π1 ∈ Π(G1) and π2 ∈ Π(G2) such that σ(π) ∈ σ(π1) � σ(π2). In other
words, there are extensions e1 of σ(π1) and e2 of σ(π2) of the same length such that σ(π) = e1 +e2.
For r ∈ [2], since σ(π∗r) ≺ σ(πr), we have that σ(π∗r) ≺ er. By Lemma 2.10(ii),7 there exists some
f ∈ σ(π∗1)⊕σ(π∗2) such that f ≺ e1 + e2, and by Lemma 3.5, there is some f ′ ∈ σ(π∗1)�σ(π∗2) such
that f ′ ≺ f . Since σ(π∗) ≺ σ(π∗1)� σ(π∗2), we have that σ(π∗) ≺ f ′, and hence (ii) follows:

σ(π∗) ≺ f ′ ≺ f ≺ e1 + e2 = σ(π). �

We are now ready to prove the first main result of this section.

7Take r = e1, s = e2, r0 = σ(π1), and s0 = σ(π2).

25

Theorem 4.7. Let (G,ω) be a weighted series parallel digraph on n vertices and m arcs, and let
W ..=

∑
(u,v)∈A(G) ω(u, v). There is an algorithm that computes in time O((n2 + m) logW) the

weighted cutwidth of (G,ω), and outputs a topological order that achieves the upper bound.

Proof. First, we modify G so that it has no parallel arcs, without changing the weighted cutwidth.
for any pair u, v ∈ V (G) such that G has p > 1 parallel (u, v)-arcs, say a1, . . . , ap, we replace
a1, . . . , ap with a single arc a∗ of weight

∑
i∈[p] ω(ai). It is easy to see that this does not change

the cutwidth, and clearly, the resulting graph is still series parallel. Moreover, this can be done in
time at most O(m logW), and we may from now on assume that |A(G)| = O(n2).

We use the algorithm of Valdes et al. [25] to compute in time O(n + |A(G)|) = O(n2) a
decomposition tree T that yields G, see Theorem 2.13. We process T in a bottom-up fashion, and
at each node t ∈ V (T), compute a topological order πt of Gt, the series parallel digraph associated
with node t, such that σ(πt) dominates all cut-size sequences of Gt. Let t ∈ V (T).

Case 1 (t is a leaf node). In this case, Gt is a single arc and there is precisely one topological
order of Gt; we return that order.

Case 2 (t is a series node with left child ` and right child r). In this case, we look up π`, a
topological order such that σ(π`) dominates all cut-size sequences of G`, and πr, a topological
order such that σ(πr) dominates all cut-size sequences of Gr. Following Lemma 4.6(i), we
return π` ◦ πr.

Case 3 (t is a parallel node with left child ` and right child r). In this case, we look up π`
and πr as in Case 2, and we compute πt such that σ(πt) dominates σ(π`) � σ(πr) using the
Merge Dominator Lemma (Lemma 3.17). Following Lemma 4.6(ii), we return πt.

Finally, we return πr, the topological order (of Gr = G) computed for r, the root of T . Observa-
tions 4.3 and 4.4 ensure that it is sufficient to compute in each of the above cases a set Π∗t ⊆ Π(Gt)
with the following property. For each πt ∈ Π(Gt), there is a π∗t ∈ Π∗t such that σ(π∗t) ≺ σ(πt).
By Lemma 4.6, we know that we can always find such a set of size one which is precisely what we
compute in each of the above cases. Correctness of the algorithm follows. Since T has O(n) nodes
and each of the above cases can be handled in at most O(n) integer operations by Lemma 3.17,
the total runtime of the algorithm after removing parallel arcs is O(n2 logW), since the maximum
value of any element in a cut-size sequence is trivially upper bounded by W . Therefore, the total
runtime is O((n2 +m) logW). �

We can easily use the algorithm of the previous theorem to solve the (unweighted) Cutwidth
of Series Parallel Digraphs problem.

Corollary 4.8. Let G be series parallel digraph on n vertices and m arcs. There is an algorithm
that computes in time O((n2 + m) logm) the cutwidth of G, and outputs a topological order that
achieves the upper bound.

Proof. We create a weighted SPD (G′, ω′) as follows. The SPD G′ is obtained from G by replacing
each set of parallel arcs from one vertex to another with a single arc. We let ω′ : A(G′)→ N, such
that for all (u, v) ∈ A(G′), ω′(u, v) is the number of parallel (u, v)-arcs in G. It is clear that the
weighted cutwidth of (G′, ω′) is equal to the cutwidth of G. We can therefore apply the algorithm
of Theorem 4.7 to find the cutwidth of G via the weighted cutwidth of (G′, ω′). �

26

s

a

b

c

t

G

sout

ain aout

bin bout

cin cout

tin

(G′, ω) 7

7

7

1

1 1 1 1

1

Figure 10: Illustration of the transformation given in the proof of Theorem 4.9. Note that in this case,
m = 6, so the arcs between vertices vin and vout have weight 7.

4.2 Modified Cutwidth

We now show how to use the algorithm for computing the weighted cutwidth of series parallel
digraphs from Theorem 4.7 to give an algorithm that computes the modified cutwidth of a series
parallel digraph in polynomial time. Recall that given a topological order v1, . . . , vn of a directed
acyclic graph G, its modified cutwidth is the maximum over all i ∈ [n − 1] of the number of arcs
that have their tail vertex in {v1, . . . , vi−1} and their head vertex in {vi+1, . . . , vn}, and that the
modified cutwidth of G is the minimum modified cutwidth over all its topological orders. We are
dealing with the following computational problem.

Input: A series parallel digraph G.
Question: What is the modified cutwidth of G?

Modified Cutwidth of Series Parallel Digraphs

To solve this problem, we will provide a transformation which allows for applying the algorithm
for the Weighted Cutwidth of SPD’s problem to compute the modified cutwidth. We would
like to remark that this transformation is similar to one provided in [6], however some modifications
are necessary to ensure that the digraph resulting from the transformation is an SPD.

Theorem 4.9. Let G be a series parallel digraph on n vertices and m arcs. There is an algorithm
that computes in time O((n+m)2 logm) the modified cutwidth of G, and outputs a topological order
of G that achieves the upper bound.

Proof. We give a transformation that enables us to solve Modified Cutwidth of SPD’s with
help of an algorithm that solves Weighted Cutwidth of SPD’s.

Let (G′′, (s, t)) be an SPD on n vertices and m arcs. If G′′ has parallel arcs then we subdivide
all but one of the parallel arcs for each pair of vertices. This does not change the (modified)
cutwidth, and keeps a digraph series parallel. Let (G, (s, t)) denote the resulting SPD which will be
the input graph to the Modified Cutwidth of SPD’s problem that we are solving. Note that
|V (G)| = O(n+m) and that |A(G)| = O(m). We construct another digraph G′ and an arc-weight
function ω : A(G′)→ N as follows. For each vertex v ∈ V (G) \ {s, t}, we add to G′ two vertices vin
and vout. We add s and t to G′ and write s as sout and t as tin. We add the following arcs to G′.
First, for each v ∈ V (G), we add an arc (vin, vout) and we let ω(vin, vout) ..= m+ 1. Next, for each
arc (v, w) ∈ A(G), we add an arc (vout, win) to G′ and we let ω(vout, win) ..= 1. For an illustration
see Figure 10.

We observe that the size of G′ is linear in the size of G, and then prove that if G′ is obtained
from applying the above transformation to a series parallel digraph, then G′ is itself an SPD.

Observation 4.9.1. Let G and G′ be as above. Then, n′ ..= |V (G′)| ≤ 2|V (G)| and |A(G′)| ≤
|A(G)|+ |V (G)|.

27

Claim 4.9.2. If G is a series parallel digraph, then G′ as constructed above is an SPD.

Proof. We prove the claim by induction on n, the number of vertices of G. For the base case
when n = 2, we have that G is a single arc in which case G′ is a single arc as well. Now suppose
n > 2. Since n > 2, G is obtained from two series parallel digraphs G1 and G2 via series or parallel
composition. Since G has no parallel arcs, we can use the induction hypothesis to conclude that
the graphs G′1 and G′2 obtained via our construction are series parallel. Now, if G = G1 //G2,
then it is immediate that G′ is series parallel. If G = G1 •G2, then we have that in G′, the vertex
that was constructed since t1 and s2 were identified, call this vertex x, got split into two vertices
xin and xout with a directed arc of weight m+ 1 pointing from xin to xout. Call the series parallel
digraph consisting only of this arc (X, (xin, xout)). We now have that G′ = G′1 •X •G′2, so G′ is
series parallel in this case as well. y

We are now ready to prove the correctness of this transformation. To do so, we will assume
that we are given an integer k and we want to decide whether the modified cutwidth of G is at
most k.

Claim 4.9.3. If G has modified cutwidth at most k, then G′ has weighted cutwidth at most m+k+1.

Proof. Take a topological order π of G such that mcutw(π) ≤ k. We obtain π′ from π by replacing
each vertex v ∈ V (G) \ {s, t} by vin followed directly by vout. Clearly, this is a topological order of
G′. We show that the weighted cutwidth of this order is at most m+ k + 1.

Let i ∈ [n′ − 1] and consider the cut between position i and i + 1 in π′. We have to consider
two cases. In the first case, there is some v ∈ V (G) such that π′−1(i) = vin and π′−1(i+ 1) = vout.
Then, there is an arc of weight m + 1 from vin to vout crossing this cut, and some other arcs
of the form (uout, win) for some arc (u,w) ∈ A(G). All these arcs cross position π(v) in π, so
since mcutw(π) ≤ k, there are at most k of them. Furthermore, for each such arc we have that
ω((uout, win)) = 1 by construction, so the total weight of this cut is at most m+ k + 1.

In the second case, we have that π′−1(i) = vout and π′−1(i + 1) = win for some v, w ∈ V (G),
v 6= w. By construction, we have that π(w) = π(v) + 1. Hence, any arc crossing the cut between i
and i+ 1 in π′ is of one of the following forms.

(i) It is (xout, yin) for some (x, y) ∈ A(G) with π(x) < π(v) and π(y) > π(v), or

(ii) it is (xout, yin) for some (x, y) ∈ A(G) with π(x) < π(w) and π(y) > π(w), or

(iii) it is (vout, win).

Since mcutw(G) ≤ k, there are at most k arcs of the first and second type, and since G has no
parallel arcs, there is at most one arc of the third type. By construction, all these arcs have weight
one, so the total weight of this cut is 2k + 1 ≤ m+ k + 1. y

Claim 4.9.4. If G′ has weighted cutwidth at most m+ k+ 1, then G has modified cutwidth at most
k.

Proof. Let π′ be a topological order of G′ such that wcutw(π′, ω) ≤ m+ k+ 1. First, we claim that
for all v ∈ V (G) \ {s, t}, we have that π′(vout) = π′(vin) + 1. Suppose not, for some vertex v. If we
have that π′(vin) < π′(win) < π′(vout) for some w ∈ V (G) \ {s, t} and w 6= v, then the cut between
π′(win) and π′(win) + 1 has weight at least 2m + 2: the two arcs (vin, vout) and (win, wout) cross
this cut, and they are of weight m+ 1 each. Similarly, if π′(vin) < π′(wout) < π′(vout), then the cut

28

between π′(wout)− 1 and π′(wout) has weight at least 2m+ 2. Since 2m+ 2 > m+ k + 1, we have
a contradiction in both cases.

We define a linear order π of G as follows. We let π(s) ..= 1, π(t) ..= n, and for all v, w ∈
V (G)\{s, t}, we have π(v) < π(w) if and only if π′(vin) < π′(win). It is clear that π is a topological
order of G; we show that π has modified cutwidth at most k. Consider an arc (x, y) that crosses a
vertex v in π, i.e., we have that π(x) < π(v) < π(y). We have just argued that π′(vout) = π′(vin)+1,
so we have that the arc (xout, yin) crosses the cut between vin and vout in π′. Recall that there is
an arc of weight m + 1 from vin to vout, so since wcutw(π′, ω) ≤ m + k + 1, we can conclude that
in π, there are at most (m+ k + 1)− (m− 1) = k arcs crossing the vertex v in π. y

Now, to compute the modified cutwidth of G, we run the above described transformation to obtain
(G′, ω), and compute a topological order that gives the smallest weighted cutwidth of (G′, ω) using
Theorem 4.7. We can then follow the argument given in the proof of Claim 4.9.4 to obtain a
topological order for G that gives the smalles modified cutwidth of G.

By Claim 4.9.2, G′ is an SPD, so we can indeed apply the algorithm of Theorem 4.7 to solve
the instance (G′, ω). Correctness follows from Claims 4.9.3 and 4.9.4. By Observation 4.9.1,
|V (G′)| = O(|V (G)|) = O(n+m), and |A(G′)| ≤ |V (G)|+ |A(G)| = O(m+ n), and clearly, (G′, ω)
can be constructed in time O(|V (G)| + |A(G)|) = O(n + m); since

∑
(u,v)∈A(G′) ω(u, v) = mO(1),

the overall runtime of this procedure is at most O((n+m)2 logm). �

5 Conclusions

In this paper, we obtained a new technical insight in a now over a quarter century old technique,
namely the use of typical sequences. The insight led to new polynomial time algorithms. Since its
inception, algorithms based on typical sequences give the best asymptotic bounds for linear time
FPT algorithms for treewidth and pathwidth, as functions of the target parameter. It still remains
a challenge to improve upon these bounds (2O(pw2), respectively 2O(tw3)), or give non-trivial lower
bounds for parameterized pathwidth or treewidth. Possibly, the Merge Dominator Lemma can be
helpful to get some progress here.

As other open problems, we ask whether there are other width parameters for which the Merge
Dominator Lemma implies polynomial time or XP algorithms, or whether such algorithms exist for
other classes of graphs. For instance, for which width measures can we give XP algorithms when
parameterized by the treewidth of the input graph?

Lastly, we present one more open problem regarding the computation of width measures of
series parallel digraphs. The vertex separation number of a topological order is the maximum over
all cuts induced by the order of the number of vertices on the left side that have a neighbor on the
right side. Finding a topological order that minimizes the vertex separation number corresponds
to an important problem in compiler optimization, specifically to a problem related to register
allocation: we are given a set of expressions (a “basic block” or “straight-line code”) that have
certain dependencies among each other and the task is to find a sequence for executing these
expressions, respecting the dependencies, such that the number of used registers is minimized.
The dependencies among these expressions form an acyclic digraph and any allowed schedule is a
topological order. This problem was shown to be NP-hard by Sethi [20] while Kessler [15] gave
a 2O(n) time exact algorithm, improving over the nO(n) naive brute-force approach. Sethi and
Ullman [21] showed in 1970 that the problem is linear time solvable if the acyclic digraph is a
tree which (to the best of our knowledge) is the only known polynomial time case. It seems that
with the help of the Merge Dominator Lemma, we might be able to obtain a polynomial time

29

algorithm for this problem on series parallel digraphs. However, the application cannot be as
immediate as in the case of cutwidth and modified cutwidth. The vertex separation number counts
vertices rather than edges (as it is the case for cutwidth and modified cutwidth), and in a parallel
composition, the sources of two SPDs are being identified. In a straightforward approach, this
results in overcounting the contribution of the source vertex to several cuts, which is the main
obstacle that needs to be overcome. While at first glance this may look like an issue that could be
solved with rather straightforward techniques, we want to point out that (in our own experience)
such direct approaches are fraught with very subtle pitfalls.

Acknowledgements. We would like to thank anonymous reviewers for many helpful com-
ments that greatly improved the presentation of the paper.

References

[1] Ernst Althaus and Sarah Ziegler. Optimal tree decompositions revisited: A simpler linear-time
FPT algorithm. CoRR, abs/1912.09144, 2019.

[2] Eyal Amir. Approximation algorithms for treewidth. Algorithmica, 56(4):448–479, 2010.

[3] Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM Journal on Computing, 25(6):1305–1317, 1996.

[4] Hans L. Bodlaender, Leizhen Cai, Jianer Chen, Michael R. Fellows, Jan Arne Telle, and Dániel
Marx. Open problems in parameterized and exact computation – IWPEC 2006. Technical
Report UU-CS-2006-052, Department of Information and Computing Sciences, Utrecht Uni-
versity, 2006.

[5] Hans L Bodlaender, P̊al Grøn̊as Drange, Markus S Dregi, Fedor V Fomin, Daniel Lokshtanov,
and Micha l Pilipczuk. A ckn 5-approximation algorithm for treewidth. SIAM Journal on
Computing, 45(2):317–378, 2016.

[6] Hans L. Bodlaender, Michael R. Fellows, and Dimitrios M. Thilikos. Derivation of algorithms
for cutwidth and related graph layout parameters. Journal of Computer and System Sciences,
75(4):231–244, 2009.

[7] Hans L. Bodlaender, Jens Gustedt, and Jan Arne Telle. Linear-time register allocation for
a fixed number of registers. In Proceedings of the 9th Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 1998, pages 574–583. ACM/SIAM, 1998.

[8] Hans L. Bodlaender and Ton Kloks. Efficient and constructive algorithms for the pathwidth
and treewidth of graphs. Journal of Algorithms, 21(2):358–402, 1996.

[9] Hans L. Bodlaender and Dimitrios M. Thilikos. Constructive linear time algorithms for branch-
width. In Proceedings 24th International Colloquium on Automata, Languages and Program-
ming, ICALP 1997, volume 1256 of Lecture Notes in Computer Science (LNCS), pages 627–
637. Springer, 1997.

[10] Hans L. Bodlaender and Dimitrios M. Thilikos. Computing small search numbers in linear
time. In Proceedings of the 1st International Workshop on Parameterized and Exact Computa-
tion, IWPEC 2004, volume 3162 of Lecture Notes in Computer Science (LNCS), pages 37–48.
Springer, 2004.

30

[11] Mikolaj Bojanczyk and Michal Pilipczuk. Optimizing tree decompositions in MSO. In Herib-
ert Vollmer and Brigitte Vallée, editors, Proceedings of the 34th Symposium on Theoretical
Aspects of Computer Science, STACS 2017, volume 66 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 15:1–15:13, 2017.

[12] Uriel Feige, MohammadTaghi Hajiaghayi, and James R. Lee. Improved approximation algo-
rithms for minimum weight vertex separators. SIAM Journal on Computing, 38(2):629–657,
2008.

[13] Martin Fürer. Faster computation of path-width. In Proceedings 27th International Work-
shop on Combinatorial Algorithms, IWOCA 2016, volume 9843 of Lecture Notes in Computer
Science (LNCS), pages 385–396. Springer, 2016.

[14] Jisu Jeong, Eun Jung Kim, and Sang-il Oum. The “art of trellis decoding” is fixed-parameter
tractable. IEEE Transactions on Information Theory, 63(11):7178–7205, 2017.

[15] Christoph W. Kessler. Scheduling expression DAGs for minimal register need. Computer
Languages, 24(1):33–53, 1998.

[16] Jens Lagergren. Efficient parallel algorithms for graphs of bounded tree-width. Journal of
Algorithms, 20(1):20–44, 1996.

[17] Jens Lagergren and Stefan Arnborg. Finding minimal forbidden minors using a finite con-
gruence. In Proceedings of the 18th International Colloquium on Automata, Languages and
Programming, ICALP 1991, volume 510 of Lecture Notes in Computer Science (LNCS), pages
532–543. Springer, 1991.

[18] Bruce A. Reed. Finding approximate separators and computing tree width quickly. In Pro-
ceedings of the 24th Annual ACM Symposium on Theory of Computing, STOC 1992, pages
221–228. ACM, 1992.

[19] Neil Robertson and Paul D. Seymour. Graph minors. XIII. The disjoint paths problem. Journal
of Combinatorial Theory, Series B, 63(1):65–110, 1995.

[20] Ravi Sethi. Complete register allocation problems. SIAM Journal on Computing, 4(3):226–248,
1975.

[21] Ravi Sethi and Jeffrey D. Ullman. The generation of optimal code for arithmetic expressions.
Journal of the ACM, 17(4):715–728, 1970.

[22] Richard P. Stanley. Enumerative Combinatorics, Volume I. Cambridge University Press, 2nd
edition, 2011.

[23] Dimitrios M. Thilikos, Maria J. Serna, and Hans L. Bodlaender. Cutwidth I: A linear time
fixed parameter algorithm. Journal of Algorithms, 56(1):1–24, 2005.

[24] Dimitrios M. Thilikos, Maria J. Serna, and Hans L. Bodlaender. Cutwidth II: algorithms for
partial w-trees of bounded degree. Journal of Algorithms, 56(1):25–49, 2005.

[25] Jacobo Valdes, Robert E. Tarjan, and Eugene L. Lawler. The recognition of series-parallel
digraphs. SIAM Journal on Computing, 11(2):298–313, 1982.

31

	Introduction
	Preliminaries
	Typical Sequences
	Directed Acyclic Graphs

	The Merge Dominator Lemma
	The Merge Matrix, Paths, and Non-Diagonality
	The Split Lemma
	The Chop Lemmas
	The Split-and-Chop Algorithm
	Generalization to Arbitrary Integer Sequences

	Directed Width Measures of Series Parallel Digraphs
	Cutwidth
	Modified Cutwidth

	Conclusions

