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Abstract

We provide a polynomial-time algorithm for b-Coloring on graphs of constant clique-width.
This unifies and extends nearly all previously known polynomial time results on graph classes,
and answers open questions posed by Campos and Silva [Algorithmica, 2018] and Bonomo et
al. [Graphs Combin., 2009]. This constitutes the first result concerning structural parameteriza-
tions of this problem. We show that the problem is FPT when parameterized by the vertex cover
number on general graphs, and on chordal graphs when parameterized by the number of colors.
Additionally, we observe that our algorithm for graphs of bounded clique-width can be adapted
to solve the Fall Coloring problem within the same runtime bound. The running times of
the clique-width based algorithms for b-Coloring and Fall Coloring are tight under the
Exponential Time Hypothesis.

1 Introduction

This paper settles open questions regarding the complexity of the b-Coloring problem on graph
classes and initiates the study of its structural parameterizations. A b-coloring of a graph G with
k colors is a partition of the vertices of G into k independent sets such that each of them contains a
vertex that has a neighbor in all of the remaining ones. The b-chromatic number of G, denoted by
χb(G), is the maximum integer k such that G admits a b-coloring with k colors. This notion was
introduced by Irving and Manlove [34] to describe the behavior of the following color-suppressing
heuristic for the Graph Coloring problem. We start with some proper coloring of the input
graph G and try to iteratively suppress one of its colors. That is, for a given color c, we consider
each vertex v of color c, and check if there is another color c′ 6= c available that does not appear in
its neighborhood. If so, we assign vertex v the color c′, observing that the coloring remains proper,
and repeat this process for the remaining vertices of color c. If successful, we remove the color c
from all vertices of G and decrease the number of colors by one. Once no color can be supressed
by this procedure, the coloring at hand is a b-coloring of G, and in the worst case, this heuristic
produces a coloring with χb(G) many colors.

Since then, the b-Coloring and b-Chromatic Number problems which given a graph G and
an integer k ask whether G has a b-coloring with k colors and whether χb(G) ≥ k, respectively, have

∗Based on an extended abstract that appeared STACS 2021 [36].
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received considerable attention in the algorithms and complexity communities. Before we discuss
these results, note that the b-Coloring and b-Chromatic Number problem are not as closely
related as the Graph Coloring and Chromatic Number problems in terms of their (polynomial
time) complexities. If we can solve Chromatic Number, then we can use this algorithm to solve
Graph Coloring, since each n-vertex graph G has proper colorings with χ(G), . . . , n colors.
However, knowing χb(G) and χ(G) does not say anything about the existence of a b-coloring with
k ∈ {χ(G) + 1, . . . , χb(G)− 1} colors. Therefore, the b-Coloring problem can be computationally
harder on a graph class than the b-Chromatic Number problem. Trivially, if we know how to
solve b-Coloring in polynomial time, we can solve b-Chromatic Number in polynomial time.

The b-Chromatic Number problem has been shown to be NP-complete in the general case [34],
as well as on bipartite graphs [41], co-bipartite graphs [6], chordal graphs [29], and line graphs [8],
and a lot of effort has been put into devising polynomial time algorithms for b-Coloring in
various other classes of graphs.1 These include trees [34], tree-cographs [6], and graphs with few
P4s, such as cographs and P4-sparse graphs [5], P4-tidy graphs [58], and (q, q − 4)-graphs for
constant q [10]. A common property shared by these graph classes is that they all have bounded
clique-width [27, 28, 48, 57].2

The main contribution of this work is an algorithm that solves b-Coloring (and b-Chromatic
Number) in polynomial time on graphs of constant clique-width. Besides unifying the above
mentioned polynomial time cases, this extends the tractability landscape of these problems to
larger graph classes, and answers two open problems stated in the literature.

Over a decade ago, Bonomo et al. [5] asked whether their polynomial time result for cographs
can be extended to distance-hereditary graphs. Havet et al. [29] answered the question negatively by
providing an NP-completeness proof for chordal distance-hereditary graphs. We observe, however,
that their proof has a flaw and while it does prove the claimed statement for chordal graphs, it
unfortunately fails to do so for distance-hereditary graphs. Our polynomial time algorithm for
graphs of bounded clique-width in fact provides a positive answer to Bonomo et al.’s question, as
distance-hereditary graphs have clique-width at most three [27]. In recent years, even subclasses of
distance-hereditary graphs have received significant attention, for instance in the work of Campos
and Silva [11]: they provide a polynomial time algorithm for claw-free block graphs, and ask whether
this result can be generalized to block graphs. Our algorithm provides a positive answer to this
question as well. Moreover, it extends the known algorithm for (q, q−4)-graphs [10] (for constant q)
to all (q, t)-graphs for constants q and t with q ≥ 4, t ≥ 0, and either q ≤ 6 and t ≤ q − 4, or q ≥ 7
and t ≤ q− 3, by a theorem due to Makowsky and Rotics [48]. Similarly, it extends the polynomial
time algorithm for P4-tidy graphs [58] to the class of partner-limited graphs thanks to a result by
Vanherpe [57]. We give an overview of the graph classes involved in the previous discussion in
Figure 1.

Our algorithm runs in time n2
O(w)

, where n denotes the number of vertices of the input graph
which is given together with a clique-width w-expression. As consequences of results due to Fomin
et al. [23] and Fomin et al. [24], we observe that b-Coloring parameterized by clique-width is
W[1]-hard, and that the exponential dependence on w in the degree of the polynomial cannot be

1In many of the following references, the results are stated for b-Chromatic Number instead of b-Coloring;
however the algorithms for b-Coloring follow from the algorithms for b-Chromatic Number together with the
fact that these graph classes are b-continuous [6, 22, 58], meaning that they have b-colorings any number k ∈
{χ(G), . . . , χb(G)} of colors, and the fact that Chromatic Number is solvable in polynomial time on these graph
classes (for instance via [21, 59]).

2To the best of our knowledge, the only polynomial time result for graphs of unbounded clique-width so far
concerns graphs of large girth. In particular, Campos et al. [9] showed that b-Chromatic Number is polyomial-time
solvable on graphs of girth at least 7.
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Figure 1: Some graph classes on which the complexities of b-Coloring and b-Chromatic Number problem
were studied. Whenever two classes are connected by a line, the upper one contains the lower one. All NP-
hardness results hold for b-Chromatic Number and all polynomial time results, except the one for graphs
of girth at least seven, hold for b-Coloring. The inner bottom area (dotted line) shows classes for which
polynomial time algorithms were previously known and the outer area (dashed line, labeled cw = O(1))
shows on which classes our algorithm can be applied.

avoided unless the Exponential Time Hypothesis (ETH) fails. Concretely, an algorithm running in

time n2
o(w)

would refute ETH.
From the point of view of parameterized complexity, Panolan et al. [50] showed that b-Chromatic

Number parameterized by the number of colors is W[1]-hard. However, this problem may even
be harder, since so far no XP-algorithm is known. Recently, Aboulker et al. [1] showed that the
more restrictive b-Chromatic Core problem parameterized by the number of colors (which has
a brute-force XP-algorithm, see e.g. [20]) remains W[1]-hard.

It is therefore natural to ask which additional restrictions can be imposed to obtain parameter-
ized tractability results. For instance, an open problem posed by Sampaio [53] (see also [55]) asks
whether b-Coloring parameterized by the number of colors is FPT on chordal graphs. We answer
this question in the affirmative. Other restricted cases that have been considered in the literature
target specific numbers of colors that depend on the input graph. The Dual b-Coloring problem,
which asks if an input n-vertex graph has a b-coloring with n− k colors, is FPT parameterized by
k [30]. Moreover, deciding if a graph G has a b-coloring with k = ∆(G) + 1 colors, which is an
upper bound on χb(G), is FPT parameterized by k [50, 53], while the case k = ∆(G) is XP and for
every fixed p ≥ 1, the case k = ∆(G)− p is NP-complete for k = 3 [35].

Another novelty aspect of our XP-algorithm parameterized by clique-width is that it is the
first result about structural parameterizations of the b-Coloring and b-Chromatic Number
problems. In all previously known polynomial time cases the algorithms only work if the input
graph has some prescribed structure. Our algorithm works on all graphs, albeit with a prohibitively
slow runtime on graphs of large clique-width. In this vein, we round off our work with an FPT-result
for another lead player among structural parameterizations, the vertex cover number of a graph; a
parameter often referred to as the Drosophila of parameterized complexity.
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Fall Coloring. A fall coloring is a special type of b-coloring where every vertex needs to have
at least one neighbor in all color classes except its own. In other words, it is a partition of the
vertex set of a graph into independent dominating sets. As a standalone notion, fall coloring has
been introduced by Dunbar et al. [19]. However, since the corresponding Fall Coloring problem
falls in the category of locally checkable vertex partitioning problems, it has been shown in earlier
work of Telle and Proskurowski [56] to be FPT parameterized by the tree-width of the input graph,
as well as FPT parameterized by clique-width plus the number of colors by Gerber and Kobler [25]
(see also [7]), and by Heggernes and Telle [31] to be NP-complete for fixed number of colors. Fall
Coloring remains hard further restricted to bipartite [43, 44, 54], chordal [54], or planar [44]
graphs. On the other hand, even with unbounded number of colors, it is known to be solvable in
polynomial time on strongly chordal graphs [47, 26], threshold graphs and split graphs [49]. In all
of these cases, one simply checks whether the chromatic number of the input graph is equal to its
minimum degree plus one. To the best of our knowledge, these are the only known polynomial
time cases.

We adapt our algorithm for b-Coloring on graphs of bounded clique-width to solve Fall
Coloring, and therefore show that the latter problem is as well solvable in time n2

O(w)
, where

w denotes the clique-width of a given decomposition of the input graph. By a simple reduction,
we show that Fall Coloring is also W[1]-hard in this parameterization and that an n2

o(w)
-time

algorithm for it would refute ETH.

Vertex Coloring Problems Parameterized by Clique-Width. We briefly touch on differ-
ences in the complexities of vertex coloring problems of graphs when parameterized by clique-width.
While the standard Graph Coloring problem, asking for a proper coloring of the input graph, is
XP-time solvable parameterized by clique-width [21, 59], some of its generalizations are NP-complete
on graphs of constant clique-width. In the List Coloring problem we are given a graph G and for
each of its vertices v a list L(v) of colors, and the question is whether G has a proper coloring such
that each vertex is assigned a color from its list. This problem is NP-complete on the (not disjoint)
union of two complete graphs [38]. We can see that such graphs have bounded clique-width for
instance by observing that they do not contain a path on four vertices as an induced subgraph, and
are therefore cographs, which have clique-width at most two [16]. In the related Precoloring
Extension problem, we are given a graph, some of whose vertices already received a color, and
the question is whether this coloring can be extended to a proper coloring of the entire graph. The
following standard reduction from List Coloring, starting with a graph that is the union of two
complete graphs, shows that this variant is NP-complete on graphs of constant clique-width as well.
Take the graph G together with the lists L(·), and construct a graph H by adding to G, for each
vertex v ∈ V (G) and each color c /∈ L(v), a new vertex xcv which is adjacent only to v and assigned
color c. It is not difficult to see that this precoloring of H can be extended to the remainder of its
vertices if and only if G has a list coloring using the lists L(·). Moreover, adding pendant vertices
to a graph does not increase its clique-width.

Belmonte et al. [3] showed that the Grundy Coloring problem, which asks for a linear
order of the vertices that maximizes the number of colors used by the greedy coloring heuristic,
is NP-complete on graphs of constant clique-width. This nicely contrasts our XP-algorithm for
b-Coloring, since both the b-Coloring and the Grundy Coloring problems are rooted in the
theoretical analysis of graph coloring heuristics.

Very recently, Jaffke et al. [37] showed that the Clique Coloring problem, asking for a vertex
coloring without monochromatic maximal cliques, is XP parameterized by clique-width as well. The
question whether Clique Coloring parameterized by clique-width is W[1]-hard remains open.
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Sketch of the algorithm. Let us discuss how we obtain our XP-algorithm parameterized by
clique-width. First, we consider a branch decomposition of the input graph G of bounded module-
width w which is equivalent to clique-width and has the following property. At each node t of the
branch decomposition we have a subgraph Gt of G whose vertex set can be partitioned into at
most w equivalence classes with respect to their neighborhood outside of Gt. For the purpose of
our dynamic programming algorithm, it suffices to describe colorings by the way each of their color
classes interacts with these equivalence classes. In the Graph Coloring problem, it is enough to
describe a color class according to its intersection with the equivalence classes of Gt alone [21, 59]
(see also [24]). For the b-Coloring problem, we additionally have to ensure that eventually, each
color class indeed has a b-vertex. The challenge is to do so without explicitly remembering which
color classes a vertex has already seen in its neighborhood – this would result in prohibitively large
tables. We overcome this difficulty by a symmetry breaking trick that instead stores, for each color
class, a demand to the future neighbors of the equivalence classes which – if fulfilled – guarantees
that the other color classes can have b-vertices in the end.

2 Preliminaries

Graphs. All graphs considered here are simple and finite. For a graph G we denote by V (G)
and E(G) the vertex set and edge set of G, respectively. For an edge e = uv ∈ E(G), we call u and
v the endpoints of e and we write u ∈ e and v ∈ e.

For two graphs G and H, we say that G is a subgraph of H, written G ⊆ H, if V (G) ⊆ V (H)
and E(G) ⊆ E(H). For a set of vertices S ⊆ V (G), the subgraph of G induced by S is G[S] ..=
(S, {uv ∈ E(G) | u, v ∈ S}).

For a graph G and a vertex v ∈ V (G), the set of its neighbors is NG(v) ..= {u ∈ V (G) |
uv ∈ E(G)}, and the degree of v is degG(v) ..= |NG(v)|. The closed neighborhood of v is NG[v] ..=
{v} ∪NG(v). For a set X ⊆ V (G), we let NG(X) ..=

⋃
v∈X NG(v) \X and NG[X] ..= X ∪NG(X).

In all these cases, we may drop G as a subscript if it is clear from the context. A graph is called
subcubic if all its vertices have degree at most three.

A graph G is connected if for all 2-partitions (X,Y ) of V (G) with X 6= ∅ and Y 6= ∅, there
is a pair x ∈ X, y ∈ Y such that xy ∈ E(G). A connected component of a graph is a maximal
connected subgraph. A connected graph is called a cycle if all its vertices have degree two. A
connected graph is called a tree if it has no cycle as a subgraph. In a tree T , the vertices of degree
one are called the leaves of T , denoted by L(T ), and the vertices in V (T ) \ L(T ) are the internal
vertices of T . A tree of maximum degree at most two is a path and the leaves of a path are called
its endpoints. If P is a path with endpoints u and v, then we say that P is a path from u to v. The
length of a path is the number of its edges. For a graph G and a pair of vertices u, v ∈ V (G), we
denote by distG(u, v) the length of the shortest path between u and v in G.

A tree T is called rooted, if there is a distinguished vertex r ∈ V (T ), called the root of T ,
inducing an ancestral relation on V (T ): for a vertex v ∈ V (T ), if v 6= r, the neighbor of v on the
path from v to r is called the parent of v, and all other neighbors of v are called its children. For a
vertex v ∈ V (T ) \ {r} with parent p, the subtree rooted at v, denoted by Tv, is the subgraph of T
induced by all vertices that are in the same connected component of (V (T ), E(T ) \ {vp}) as v. We
define Tr ..= T . A tree T is called a caterpillar if it contains a path P ⊆ T such that all vertices in
V (T ) \ V (P ) are adjacent to a vertex in P .

For a graph H, we say that a graph G is H-free if G does not contain H as an induced subgraph.
For a set of graphs H, we say that G is H-free if G is H-free for all H ∈ H. For an integer k ≥ 3,
let Ck denote a cycle on k vertices. A graph G is called chordal if it is {Cn | n ≥ 4}-free. A graph
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G is called distance-hereditary if for each connected induced subgraph H of G, and each pair of
vertices u, v ∈ V (H), distH(u, v) = distG(u, v).

A set of vertices S ⊆ V (G) of a graph G is called an independent set if E(G[S]) = ∅. A set of
vertices S ⊆ V (G) is a vertex cover in G if V (G) \ S is an independent set in G. A set of vertices
S ⊆ V (G) is a clique in G if E(G[S]) = {uv | u, v ∈ S}.

A graph G is called bipartite if its vertex set can be partitioned into two nonempty independent
sets, which we will refer to as a bipartition of G.

Notation for Equivalence Relations. Let Ω be a set and ∼ an equivalence relation over Ω.
For an element x ∈ Ω the equivalence class of x, denoted by [x]∼ or simply [x] if ∼ is clear from
the context, is the set {y ∈ Ω | x ∼ y}. We denote the set of all equivalence classes of ∼ by Ω/∼.

Parameterized Complexity. We give the basic definitions of parameterized complexity that
are relevant to this work and refer to [17, 18] for details. Let Σ be an alphabet. A parameterized
problem is a set Π ⊆ Σ∗×N, the second component being the parameter which usually expresses a
structural measure of the input. A parameterized problem Π is said to be fixed-parameter tractable,
or in the complexity class FPT, if there is an algorithm that for any (x, k) ∈ Σ∗×N correctly decides
whether or not (x, k) ∈ Π, and runs in time f(k) · |x|c for some computable function f : N → N
and constant c. We say that a parameterized problem is in the complexity class XP, if there is an
algorithm that for each (x, k) ∈ Σ∗ × N correctly decides whether or not (x, k) ∈ Π, and runs in
time f(k) · |x|g(k), for some computable functions f and g.

The concept analogous to NP-hardness in parameterized complexity is that of W[1]-hardness,
whose formal definition we omit. The basic assumption is that FPT 6= W[1], under which no
W[1]-hard problem admits an FPT-algorithm. For more details, see [17, 18].

Exponential Time Hypothesis. The 3-SAT problem asks whether a given boolean formula
in conjunctive normal form with clauses of size at most three has a truth assignment to its variables
that lets the formula evaluate to true. In 2001, Impagliazzo, Paturi, and Zane [32, 33] conjectured
that any algorithm for the 3-SAT problem requires exponential time. This conjecture is known
as the Exponential Time Hypothesis (ETH) whose plausibility stems from the fact that despite
numerous efforts, a subexponential-time algorithm for 3-SAT remains elusive. It can be stated as
follows.

Conjecture (ETH [32, 33]). There is no algorithm that solves each instance of 3-SAT on n
variables in time 2o(n).

This conjecture initiated a rich theory of hardness results conditioned on ETH (see e.g. the
survey [45] and [17, Chapter 14]), allowing for more precise lower bounds than the ones obtained
from assumptions such as P 6= NP or FPT 6= W[1].

2.1 Clique-Width, Branch Decompositions, and Module-Width

We first define clique-width, introduced by Courcelle, Engelfriet, and Rozenberg [15], and then
the equivalent measure of module-width that we will use in our algorithm. We keep the definition
of clique-width slightly informal and refer to [15, 16] for more details. The reason why we choose
module-width over clique-width is that module-width allows for a slightly more compact description
of our algorithm, since it suffices to consider a single operation in the dynamic programming instead
of several.
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Let G be a graph. The clique-width of G, denoted by cw(G), is the minimum number of labels
{1, . . . , k} needed to obtain G using the following four operations:

(i) Create a new graph consisting of a single vertex labeled i.

(ii) Take the disjoint union of two labeled graphs G1 and G2.

(iii) Add all edges between pairs of vertices of label i and label j.

(iv) Relabel every vertex labeled i to label j.

We now turn to the definition of module-width which is based on the notion of a rooted branch
decomposition.

Definition 2.1 (Branch decomposition). Let G be a graph. A branch decomposition of G is
a pair (T,L) of a subcubic tree T and a bijection L : V (G) → L(T ). If T is a caterpillar, then
(T,L) is called linear branch decomposition. If T is rooted, then we call (T,L) a rooted branch
decomposition. In this case, for t ∈ V (T ), we denote by Tt the subtree of T rooted at t, and we
define Vt ..= {v ∈ V (G) | L(v) ∈ L(Tt)}, Vt ..= V (G) \ Vt, and Gt ..= G[Vt].

Module-width is attributed to Rao [51, 52].3 On a high level, the module-width of a rooted
branch decomposition measures, at each of its nodes t, the number of subsets of Vt that make
up the intersection of Vt with the neighborhood of some vertex in Vt. This naturally groups the
vertices of Vt into equivalence classes.

Definition 2.2 (Module-width). LetG be a graph, and (T,L) be a rooted branch decomposition
of G. For each t ∈ V (T ), let ∼t be the equivalence relation on Vt defined as follows:

∀u, v ∈ Vt : u ∼t v ⇔ NG(u) ∩ Vt = NG(v) ∩ Vt

The module-width of (T,L) is mw(T,L) ..= maxt∈V (T )|Vt/∼t|. The module-width of G, denoted
by mw(G), is the minimum module width over all rooted branch decompositions of G.

Theorem 2.3 (Rao, Thm. 6.6 in [51]). For any graph G, mw(G) ≤ cw(G) ≤ 2 · mw(G), and
given a decomposition of bounded clique-width, a decomposition of bounded module-width, and vice
versa, can be constructed in time O(n2), where n = |V (G)|.

The operator (Ht, ηr, ηs) of node t with children r and s. Let (T,L) be a rooted branch
decomposition of a graph G and let t ∈ V (T ) be a node with children r and s. We now describe an
operator associated with t that tells us how the graph Gt is formed from its subgraphs Gr and Gs,
and how the equivalence classes of ∼t are formed from the equivalence classes of ∼r and ∼s. First,
it is clear that Vt = Vr ∪ Vs. Since Gr and Gs are induced subgraphs of Gt, we furthermore know
that E(Gt[Vr]) = E(Gr) and E(Gt[Vs]) = E(Gs), so it remains to describe the edges between Vr
and Vs. By the definition of module-width, we know that each pair of vertices u, v ∈ Vr with u ∼r v
has the same neighborhood in Vr = Vs ∪ Vt. Hence, for each vertex z ∈ Vs, we know that either
both or neither of u and v are adjacent to z. In other words, for each pair Qr ∈ Vr/∼r, Qs ∈ Vs∼s,
either all edges between each pair of a vertex from Qr and a vertex from Qs are present in Gt, or

3Note that in [52], module-width is referred to as modular-width which usually has a different meaning, see e.g. [13].
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none of them. This can be described by a bipartite graph Ht on bipartition (Vr/∼r, Vs/∼s) with
[u]∼r [v]∼s ∈ E(Ht) if and only if uv ∈ E(Gt). To summarize,

E(Gt) = E(Gr) ∪ E(Gs) ∪ F where

F = {uv | u ∈ Vr, v ∈ Vs, {[u]∼r , [v]∼s} ∈ E(Ht)}.

By roughly the same reasoning, we can observe that the equivalence relation ∼t coarsens the
equivalence relations ∼r and ∼s. Consider again vertices u, v ∈ Vr such that u ∼r v. Then,
N(u) ∩ Vr = N(v) ∩ Vr, and since Vr ⊆ Vt we have that Vt ⊆ Vr, which implies that N(u) ∩ Vt =
N(v) ∩ Vt, so u ∼t v. However, it may well be that there are vertices u, v ∈ Vr with u 6∼r v, but
u ∼t v: this is the case when u and v have the same neighbors in Vt, but different neighbors in Vs.
Lastly, note that there may also be vertices v ∈ Vr and z ∈ Vs such that v ∼t z.

We have argued that each equivalence class of ∼t can be obtained by taking a subset of equiv-
alence classes of ∼r and ∼s, and joining them (in what we call a ‘bubble’ below). Formally, there
is a partition P = {P1, . . . , Ph} of V (Ht) = Vr/∼r ∪ Vs/∼s such that Vt/∼t = {Q1, . . . , Qh}, where
for 1 ≤ i ≤ h, Qi =

⋃
Q∈Pi

Q. For each 1 ≤ i ≤ h, we call Pi the bubble of the resulting equivalence
class

⋃
Q∈Pi

Q of ∼t.
As auxiliary structures, for p ∈ {r, s}, we let ηp : Vp/∼p → Vt/∼t be the map such that for all

Qp ∈ Vp/∼p, Qp ⊆ ηp(Qp), i.e. ηp(Qp) is the equivalence class of ∼t whose bubble contains Qp. We
call (Ht, ηr, ηs) the operator of t.

2.2 Colorings

Let G be a graph. An ordered partition C = (C1, . . . , Ck) of V (G) is called a coloring of G (with k
colors). (Observe that for i ∈ {1, . . . , k}, Ci may be empty.) For i ∈ {1, . . . , k}, we call Ci the color
class i, and say that the vertices in Ci have color i. C is called proper if for all i ∈ {1, . . . , k}, Ci is
an independent set in G. The restriction of a coloring C = (C1, . . . , Ck) to a vertex set S ⊆ V (G),
is C|S ..= (C1 ∩ S, . . . , Ck ∩ S). In this case we say conversely that C extends C|S .

Whenever convenient, we may alternatively denote a coloring of a graph with k colors as a map
φ : V (G) → {1, . . . , k}. In this case, a restriction of φ to S is the map φ|S : S → {1, . . . , k} with
φ|S(v) = φ(v) for all v ∈ S. For any T ⊆ V (G) with S ⊆ T , we say that φ|T extends φ|S .

A proper coloring (C1, . . . , Ck) is called a b-coloring, if for all i ∈ {1, . . . , k}, there is a vertex
vi ∈ Ci, called b-vertex of color i, such that for all j ∈ {1, . . . , k} \ {i}, NG(vi) ∩ Cj 6= ∅. In this
work, we study the following computational problem.

Input: Graph G, integer k
Question: Does G have a b-coloring with k colors?

b-Coloring

We sometimes denote a b-coloring C = (C1, . . . , Ck) by (C, B = {v1, . . . , vk}), where for all
i ∈ {1, . . . , k}, vi is a b-vertex of color i. In this case, B can be understood as the set containing a
witness b-vertex for each color class.

The following definition will be key to the algorithms presented in the next sections.

Definition 2.4 (Partial b-Coloring). Let G be a graph and k ∈ N. For an induced subgraph
H of G, a partial b-coloring of H is a pair (C, B) of a proper coloring C = (C1, . . . , Ck) of H and
a subset B ⊆ V (H) such that for all i ∈ [k], |Ci ∩ B| ≤ 1. We call the vertices in B the partial
b-vertices.
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2.3 Distance-hereditary graphs

In their work on P4-sparse graphs, Bonomo et al. [5] asked whether b-Coloring is polynomial-time
solvable on the class of distance-hereditary graphs. Havet et al. [29] claimed to answer this question
in the negative way, showing that b-Coloring is NP-complete on chordal distance-hereditary
graphs. Their proof, however, contains a flaw and the graph constructed in their reduction, even
though indeed chordal, fails to be distance-hereditary. In what follows, we briefly describe their
reduction and argue that the graph constructed is not distance-hereditary.

The reduction presented in [29] is from 3-Edge Coloring restricted to the class of 3-regular
graphs. Given an instance G for 3-Edge Coloring with V (G) = {v1, . . . , vn}, they construct a
graph H as follows. The vertex set of H contains a copy of V (G) plus one vertex associated with
each edge of G. We denote by exy the vertex corresponding to the edge xy. The vertices of V (G)
form a clique in H, the vertices corresponding to edges form an independent set, and for each edge
xy ∈ E(G), the vertex exy is adjacent to the copy of x and y in H. The connected component of
H induced by these vertices is therefore a split graph. Finally, they add three disjoint copies of
K1,n+2 to H. It is thus easy to see that H is a chordal graph. However, let xz and yz be two edges
of G sharing one endpoint. Then the subgraph of H induced by {x, y, z, exz, eyz} is isomorphic to a
gem (see Figure 2). As shown by Bandelt and Mulder [2], distance-hereditary graphs are gem-free
graphs. This shows that the graph H is not a distance-hereditary graph.

2.4 Parameterized by vertex cover

In this subsection we prove that b-Coloring is FPT when parameterized by vertex cover. We will
do so by providing a 2O(tw·k)n time algorithm for the problem parameterized by the tree-width of
the input graph plus number of colors. The result for vertex cover will then follow from the fact
that the vertex cover number of a graph is always at most its tree-width, and a b-coloring of a
graph with vertex cover ` can have at most ` + 1 many colors. Indeed, either all b-vertices are
contained in the vertex cover, in which case there are at most ` of them, or there is one outside,
whose degree is at most `, and hence it can see at most ` colors in its neighborhood.

Definition 2.5. Let G be a graph. A tree decomposition of G is a pair (T,B = {Bt | t ∈ V (T )}),
where T is a tree, and the sets in B are called bags, satisfying the following conditions.

(i)
⋃
t∈V (T )Bt = V (G).

(ii) For each uv ∈ E(G), there is some t ∈ V (T ) such that {u, v} ⊆ Bt.

(iii) For each v ∈ V (G), T [{t ∈ V (T ) | v ∈ Bt}] is connected.

The width of a tree decomposition is maxt∈V (T )|Bt| − 1 and the tree-width of G is the minimum
width over all its tree decompositions.

Definition 2.6. A tree decomposition (T,B = {Bt | t ∈ V (T )}) of a graph G is called nice if T is
a rooted tree and each node t ∈ V (T ) is one of the following types:

9



Leaf: t is a leaf of T and Bt = ∅.

Introduce: t has a single child s and Bt = Bs∪{v} for some v ∈ V (G); we say that v is introduced
at t.

Forget: t has a single child s and Bs = Bt ∪{v} for some vertex v ∈ Bt; we say that v is forgotten
at t.

Join: t has two children, s1 and s2, and Bt = Bs1 = Bs2 .

For t ∈ V (T ), we let Tt denote the subtree of T rooted at t; we let Vt =
⋃
s∈V (Tt)

Bs and Gt = G[Vt].

Theorem 2.7 (Korhonen [40]). There is an algorithm that given a graph G on n vertices and
an integer k, in 2O(w)n time either outputs a tree decomposition of G of width at most 2k + 1 or
concludes that the tree-width of G is more than k.

Lemma 2.8 (Kloks [39], verbatim from [17]). If a graph G admits a tree deecomposition of
width at most k, then it also admits a nice tree decomposition of width at most k. Moreover, given
a tree decomposition (T,B) of G of width at most k, one can in time O(k2 ·max{|V (G)|, |V (T )|})
find a nice tree decomposition of G that has at most O(k|V (G)|) nodes.

Proposition 2.9. b-Coloring can be solved in 2O(tw·k)n time, where n is the number of vertices
and tw the tree-width of the input graph, and k the number of colors.

Proof. By Theorem 2.7 and Lemma 2.8 we can assume that we have a nice tree decomposition
(T,B = {Bt | t ∈ V (T )}) of G of width w ≤ 2tw + 1 and with O(wn) nodes after spending 2O(tw)n
time. We do bottom-up dynamic programming along (T,B).

The table entries of the dynamic programming and their invariant are as follows. Let t ∈ V (T )
be a node of (T,B). Then, we let tabt[γ,C, P, σ] = 1 if there is a partial b-coloring γt of Gt with
the following properties, and 0 otherwise:

(i) γ : Bt → [k] is a proper coloring with γ = γt|Bt .

(ii) P ⊆ Bt is the set of partial b-vertices of γt that are contained in Bt.

(iii) σ : P → 2[k] is a map such that for each p ∈ P , σ(p) is the set of colors that appear in the
neighborhood of p in γt.

(iv) C ⊆ [k], where γ(P ) ⊆ C, is the set of colors that have a partial b-vertex in γt. Each partial
b-vertex not contained in Bt is a b-vertex.

We observe that at each node t ∈ V (T ) there are at most 2O(wk) table entries; moreover, once
the table entries have been computed correctly, we know that G has a b-coloring with k colors if
and only if at the root r of T there is a table entry tabr[γ, P, σ, C] = 1, where C = [k], and for all
p ∈ P , σ(p) = [k]. We discuss how to compute the table entries for each type of node in (T,B); we
assume that initially all table entries are set to 0.

Leaf. If t is a leaf, then it is trivial. For technical reasons, we assume that there is a table entry
tabt[∅, ∅, ∅, ∅] = 1.
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Introduce. If t is an introduce node, let s be its child and v the vertex introduced at v. Let γ
be a proper k-coloring of G[Bt]. Each neighbor of v that is a partial b-vertex for its color
has to mark the color γ(v) as seen in its neighborhood. To this end, for each P ⊆ Bt and
σ : P → 2[k], we say that a map σs : P → 2[k] is compatible with σ if for all p ∈ P ∩ N(v),
σ(p) = σs(p) ∪ {γ(v)}, and for all p ∈ P \N [v], σ(p) = σs(p).

We first discuss how to deal with the case when v is not a partial b-vertex for its color. We
consider each set C ⊆ [k], each P ⊆ Bt\{v}, and each map σ : P → 2[k]. We set tabt[γ, P, σ, C]
to 1 if there is a map σs : P → 2[k] compatible with σ and such that tabs[γ|Bs , P, σs, C] = 1.

Next, we consider the case when v is a partial b-vertex for its color. Then we consider each
set C ⊆ [k] with γ(v) ∈ C, and each P ⊆ Bt with v ∈ P , and each map σ : P → 2[k] where
σ(v) = γ(N(v)). We set tabt[γ, P, σ, C] to 1 if there is a map σs : P \ {v} → 2[k] that is
compatible with σ and such that tabs[γ|Bs , P \ {v}, σs, C \ {γ(v)}] = 1.

Forget. If t is a forget node, let s be its child and v be the vertex forgotten at t. The only thing we
have to ensure here is that if v was a partial b-vertex for its color, then in fact it was a b-vertex
for its color. We proceed as follows. We set tabt[γ, P, σ, C] to 1 if tabs[γs, Ps, σs, C] = 1 where
γs is an extension of γ (assigning v a color), and either

• v /∈ Ps, Ps = P , and σs = σ, or

• v ∈ Ps, P = Ps \ {v}, σs|Bt = σ and σs(v) = [k].

Join. If t is a join node, let s1 and s2 be its children. Here we only have to mark, for each partial
b-vertex contained in Bt, the colors it has seen in Gs1 and in Gs2 . Therefore we proceed as
follows. We set tabt[γ, P, σ, C] to 1 if there exist C1, C2 ⊆ [k] with C1∪C2 = C; and for i ∈ [2],
σi : P → 2[k] such that for all p ∈ P , σ(p) = σ1(p)∪σ2(p), and such that tabsi [γ, Pi, σi, Ci] = 1
for all i ∈ [2].

Correctness of the algorithm follows from its description. Regarding its run time, we observe
that for each node t ∈ V (T ), all table entries tabt[·] can be computed in time 2O(wk). Since the
number of nodes in T is at most O(wn), the algorithm runs in time 2O(wk)n = 2O(tw·k)n. �

Corollary 2.10. b-Coloring can be solved in 2O(`
2)n time where n is the number of vertices and `

the vertex cover number of the input graph.

Proof. Let G be the input graph with vertex cover number `. It is well-known that a vertex cover of
size ` of G, which can be found inO(1.2738`+`n) time [12], can be used to give a path decomposition
of G of width (at most) ` in O(n) time. Together with the fact that each b-coloring of a graph with
vertex cover number ` can have at most `+ 1 colors, the result follows from Proposition 2.9. �

2.5 Chordal graphs

Another consequence of Proposition 2.9 is that b-Coloring is fixed-parameter tractable on chordal
graphs parameterized by the number of colors; which answers an open question of Sampaio [53].

Corollary 2.11. b-Coloring can be solved in 2O(k
2)n time on chordal graphs with n vertices.

Proof. Let (G, k) be an instance of b-Coloring such that G is a chordal graph. If the maximum
clique size in G is more than k, then G has no proper coloring, and therefore no b-coloring, with k
colors. We may assume that the maximum clique size in G is at most k. This in turn implies that
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the treewidth of G is at most k, since a clique tree of G (which can be found in linear time [4]) is
in fact a tree decomposition of width at most k of G. We can therefore apply Proposition 2.9.

Note that even though the algorithm of [4] implies a linear dependence on the number of edges
in the input graph, this can be avoided by the following observation. If an n-vertex graph has
tree-width at most w, then it has at most wn edges. Therefore, if the number of edges in G is more
than kn then we can report that (G, k) is a No-instance; otherwise, the dependence on the number
of edges is subsumed by the run time of the algorithm from Proposition 2.9. �

3 Parameterized by Clique-Width

In this section, we consider the b-coloring problem parameterized by the clique-width of the input
graph. We will work with decompositions of bounded module-width, which is equivalent for our
purposes, see Theorem 2.3.

The main contribution of this section is an algorithm that given a graph G on n vertices and
one of its rooted branch decompositions of module-width w, and an integer k, decides whether G
has a b-coloring with k colors in time n2

O(w)
. Before we proceed, we observe that b-Coloring is

W[1]-hard in this parameterization, and that the exponential dependence on w of the degree of the
polynomial in the runtime is probably difficult to avoid.

Proposition 3.1. The b-Coloring problem on graphs on n vertices parameterized by their module-
width w is W[1]-hard and cannot be solved in time n2

o(w)
, unless ETH fails. Moreover, the hardness

holds even when a linear branch decomposition of width w is provided.

Proof. Fomin et al. [24] showed that the Graph Coloring problem which given a graph G of
module-width w and an integer k asks for a proper coloring of G with k colors cannot be solved
in time n2

o(w)
unless ETH fails, even when a linear branch decomposition of module-width w is

provided. Using Graph Coloring in this setting as a starting point of a reduction, we can add
a k-clique to the input graph. The resulting graph has a b-coloring with k colors if and only if
the original graph has a proper coloring with k colors (take the vertices in the k-clique as the
b-vertices). It is not difficult to see that the given branch decomposition can be extended to include
the vertices of the added k-clique without increasing its module-width by too much. W[1]-hardness
parameterized by w can be observed using the same argument, even as a consequence of an earlier
result [23]. �

3.1 Outline of the Algorithm

Throughout the following, we are given a graph G and one of its rooted branch decompositions
(T,L) of module-width w = mw(T,L) and we want to find a b-coloring of G with k colors, if it
exists. In particular, our algorithm will find a b-coloring C together with a set of witness b-vertices,
containing precisely one b-vertex for each color class of C, if it exists. This will be done via dynamic
programming along T , and for each node t ∈ V (T ), the partial solutions associated with t are
partial b-colorings of Gt (recall Definition 2.4).

To obtain an efficient algorithm, we require a compact representation of the partial b-colorings
of each subgraph Gt associated with a node t ∈ V (T ). To that end, we introduce the notion of
a t-signature of a partial b-coloring. Two partial b-colorings with the same t-signature will be
interchangeable for the sake of our algorithm, therefore the number of table entries at each node t
will be bounded by the number of t-signatures.

Let (C, B) be a partial b-coloring of Gt. For (C, B) to be extended to a b-coloring (C′, B′) of the
entire graph G, we have to ensure that two things happen for each color class C ∈ C:
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(i) The extension of C in C′ is an independent set in G.

(ii) There is a witness b-vertex in B′ for the extension of C in C′.

The t-signature has to represent a partial b-coloring faithfully enough so that we can keep track
of all the ways in which the above two conditions can be satisfied for each of its color classes ‘in the
future’. At the same time, its definition has to enable us to significantly compress the information
about partial b-colorings of Gt. This happens in the following way. We categorize color classes of
partial b-colorings of Gt according to t-types. If two color classes C1, C2 of a partial b-coloring (C, B)
have the same t-type, then the above two conditions can be satisfied for C1 and C2 by extensions
of (C, B) in the exact same ways. This allows us to forget about the ‘names’ of the color classes
in a partial b-coloring, but instead to only remember for each t-type how many color classes with
that type there are. This is precisely the information that is stored in a t-signature.

Now, if we can bound the number of t-types by some function of the module-width w, say f(w),
then the number of t-signatures is upper bounded by kf(w) ≤ nf(w). (There are at most k colors,
so in particular there are at most k colors with a given t-type.) This translates directly to an upper
bound on the number of table entries in the dynamic programming algorithm, which, up to some
constants in the degree of the polynomial, bounds the runtime of the resulting algorithm.

Let us discuss the information that goes into the definition of a t-type. Let C be a color class in
a partial b-coloring (C, B) of Gt. To keep track of which vertices from Vt can be added to C without
introducing a coloring conflict, it suffices to store which equivalence classes of ∼t have vertices in
C,4 since all vertices in a given equivalence class have the same neighbors in Vt. This way we can
ensure that condition (i) is satisfied.

To verify if condition (ii) is satisfied we have to store some information about the partial b-
vertices. Naturally, we record whether or not B contains a partial b-vertex of C, but we need to
store more information. Suppose that B contains the partial b-vertex v of C. In a straightforward
approach, we would simply keep track of the color classes that already appear in the neighborhood
of v. This way we could easily decide at which point during the execution of the algorithm, a partial
b-vertex turns into a b-vertex. However, this results in prohibitively large table entries, since there
are 2k−1 subsets of colors that we would have to consider, which for our purpose is no better than
2n.

We overcome this issue with the following symmetry breaking trick: We do not record which
color classes the partial b-vertex of C already sees/still needs to see. Instead, we record which
equivalence classes Q ∈ Vt/∼t contain a partial b-vertex w of some other color class such that
N(w)∩C = ∅. Suppose that some equivalence class Q ∈ Vt/∼t contains the partial b-vertex w ∈ B
of another color class C ′ 6= C, such that w has no neighbor of color C in Vt. For w to become a
b-vertex of its color, the color class C must be extended with a neighbor of w in the future, i.e. in
Vt. The neighborhood of w in Vt is precisely NG(Q) ∩ Vt, therefore we can concisely model this
situation as color class C requiring to contain a vertex among the future neighbors of Q. In this
situation, we say that

color class C has demand to the future neighbors of Q.

The t-type records for each equivalence class Q of ∼t, if a color class contains vertices of Q, or
if it has demand to the future of Q, or none of the two. Note that if a color class both contains
a vertex from Q and has demand to the future of Q, we already know that we can disregard
the corresponding partial b-coloring: In the corresponding color class, we cannot add any future

4This is similar to the algorithm of Wanke for Graph Coloring on graphs of bounded NLC-width [59].
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neighbors of Q without creating a coloring conflict, and if we do not add a future neighbor of Q,
then there is some color class whose partial b-vertex will never become a b-vertex.

Now, if we have a partial b-coloring in which every color class has a partial b-vertex, and all
demands have been fulfilled, meaning that there is no color class that has demand to the future
of some equivalence class of ∼t, then we know that we actually have a b-coloring. Moreover, the
number of t-types is 2O(w), so the resulting algorithm runs in time n2

O(w)
(see above).

3.2 t-Types and t-Signatures

In this section we introduce the basic concepts that we alluded to in the above description, namely
the notion of a t-type and of a t-signature, where t is some node in the given branch decomposition.
A t-type is meant to capture the necessary information of a color class in a partial b-coloring of
Gt. However, we cannot give the definition of a t-type as a property of a vertex set alone: a color
class C may have demand to the future of an equivalence class, which is because there is a partial
b-vertex of another color C ′ 6= C that has no neighbor of color C yet. Therefore, we first give the
definition of a t-type abstractly, i.e. absent of any partial b-coloring or color class, and then define
what it means for a color class to be of a certain t-type within a partial b-coloring.

The t-type is a pair of a bit that is meant to tell us whether or not a coloring contains a partial
b-vertex of that color, and a map that tells us for each equivalence class, whether there is a vertex
of the color in the equivalence class (via the value cont), or if the color has demand to the future
neighbors of the equivalence class (via the value dem), or none of the two (via the value none).

Definition 3.2 (t-Type). Let G be a graph with rooted branch decomposition (T,L) and let
t ∈ V (T ). A t-type is a pair (φ, ξ) of a map φ : Qt/∼t → {none, cont, dem} and a bit ξ ∈ {0, 1}. We
denote the set of all t-types by typest.

Before we proceed, we observe an upper bound on the number of t-types. For the component
ξ, we clearly only have two choices, and for each equivalence class Q of ∼t, the entry φ(Q) takes
one of three values.

Observation 3.3. Let (T,L) be a rooted branch decomposition of module-width w = mw(T,L). For
each t ∈ V (T ), |typest| = 2 · 3|Vt/∼t| ≤ 2 · 3w.

We now define what it means for a color class to be of a certain t-type within a partial b-coloring
of Gt. This is basically a formalization of the above discussion, but it holds one aspect that is of
importance of the algorithm and the arguments to follow. We discuss this after the following
definition, which is illustrated in Figure 3.

Definition 3.4. Let G be a graph with rooted branch decomposition (T,L) and let t ∈ V (T ). Let
(C, B) be a partial b-coloring of Gt, let C ∈ C be a color class, and let τ = (φ, ξ) ∈ typest be a
t-type. We say that C has t-type τ in (C, B) if

(i) ξ = |C ∩B| and

(ii) for each Q ∈ Vt/∼t,

(a) if Q∩C 6= ∅, and there is no v ∈ (B \C)∩Q such that N(v)∩C = ∅, then φ(Q) = cont,

(b) if Q ∩ C = ∅ and there exists some v ∈ (B \ C) ∩ Q such that N(v) ∩ C = ∅, then
φ(Q) = dem, and

(c) if Q∩C = ∅, and there is no v ∈ (B \C)∩Q such that N(v)∩C = ∅, then φ(Q) = none.
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Figure 3: Illustration of the definition of a color class being of a certain t-type inside a partial b-coloring
of Gt. The large square vertices are partial b-vertices for their color. The type of the red (r) color in the
coloring is as follows. Since it has a b-vertex (the one in Q2), we have that ξ = 1. Since Q2 and Q4 have
red vertices, φ(Q2) = φ(Q4) = cont. Q1 and Q3 do not have red vertices. Q1 contains the b-vertex of color
yellow (y), but this vertex already has a red neighbor. Therefore, φ(Q1) = none. Finally, Q3 has the b-vertex
of color blue (b), and this vertex does not have a red neighbor yet. Therefore, there has to be a red vertex
among the future neighbors of Q3. Hence, φ(Q3) = dem.

The reader may have observed that (ii) does not cover all the possibilities. The situation that
is not covered is when Q ∩ C 6= ∅ and there is some v ∈ (B \ C) ∩ Q such that N(v) ∩ C = ∅. A
priori, we can of course not exclude this as a possibility, but there is a simple reason that partial
b-colorings that contain a color class in which this situation arises can be disregarded: For the
vertex v to become a b-vertex for its color, we have to add a future neighbor of Q to C; but since
Q already contains a vertex from C this means that the resulting set is not independent anymore.

We turn to the definition of a t-signature which again is first given in abstract terms.

Definition 3.5 (t-Signature). Let G be a graph with rooted branch decomposition (T,L), and
let t ∈ V (T ). A t-signature is a map sigt : typest → {0, 1, . . . , k} such that

∑
τ∈typest sigt(τ) = k.

The following bound on the number of t-signatures immediately follows from Observation 3.3:
for each t-type, the function takes one of k + 1 ≤ n+ 1 values.

Observation 3.6. Let G be a graph on n vertices and (T,L) be one of its branch decompositions of

module-width w = mw(T,L). For each t ∈ V (T ), there are at most n2
O(w)

many t-signatures.

A t-signature represents a partial b-coloring (C, B) of Gt if for each t-type it counts correctly
how many color classes in C are of that t-type in (C, B).

Definition 3.7. Let G be a graph with rooted branch decomposition (T,L), and let t ∈ V (T ). Let
furthermore sigt be a t-signature and (C, B) a partial b-coloring in Gt. We say that sigt represents
(C, B) if for each t-type τ ∈ typest, there are precisely sigt(τ) color classes in (C, B) that have t-type
τ in (C, B).

We call a partial b-coloring of Gt representable if there is a t-signature that represents it.

Since throughout this section, we only consider b-colorings and partial b-colorings with k (pos-
sibly empty) colors, Definitions 3.5 and 3.7 together imply that if a partial b-coloring is represented
by a t-signature, then necessarily each of its color classes has a t-type: Definition 3.5 requires that
for a t-signature sigt, the sum of sigt(τ) over all t-types τ is k, and any partial b-coloring in Gt has
k colors.

We would like to remark once more that not all partial b-colorings of Gt can be represented
by a t-signature, since there is a case that a color class cannot be described by a t-type. In this
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dem

none
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none
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none

none

cont

none

Figure 4: Illustration of Definition 3.9. The shaded area shows a bubble and the labels on the equivalence
classes correspond to type labelings. For the left hand side, note that between a pair of classes that are both
labeled ‘cont’, there can be no edge in the operator. Moreover, since the bubble contains a class labeled cont
and one labeled dem, the demand of the latter has to be fulfilled at this node, i.e. there has to be an edge
from this class to a ‘cont’-class. The right side shows the situation when the ‘cont’-class in the bubble is
changed to ‘none’, in which case the dotted edges may or may not be present in the operator.

case the partial b-coloring is not representable. Conversely, we can make the following observation
about representable partial b-colorings which is useful in several proofs and sometimes used without
explicit reference.

Observation 3.8. Let G be a graph with rooted branch decomposition (T,L), and let t ∈ V (T ).
Let (C, B) be a representable partial b-coloring of Gt, and let C ∈ C be a color class whose t-type
in (C, B) is (φ, ξ). If for some equivalence class Q ∈ Vt/∼t, Q ∩ C 6= ∅, then φ(Q) = cont.

3.3 Compatibility

Let t ∈ V (T ) \ L(T ) be an internal node of the given rooted branch decomposition, let r and s
be its children, and let (Ht, ηr, ηs) be the operator of t. In our algorithm, we want to combine
information about partial b-colorings of Gr and Gs to obtain information about partial b-colorings
of Gt. We will try to obtain a color class of a partial b-coloring of Gt by taking the union of a color
class Cr of a partial b-coloring of Gr and a color class Cs of a partial b-coloring of Gs.

However, in some cases this is not possible. For instance, when Cr contains vertices from some
equivalence class Qr ∈ Vr/∼r and Cs contains vertices from some equivalence class Qs ∈ Vs/∼s,
and in the graph Ht of the operator of t, we have that QrQs ∈ E(Ht). Then, in Gt all edges
between the set Qr and Qs are present which means that Cr ∪Cs is not an independent set in Gt.

Another condition is necessary to ensure that several demands that have to be met at node t are
indeed met. Let Ct = Cr ∪ Cs and suppose there is an equivalence class Qt ∈ Vt/∼t that contains
a vertex of Ct. Suppose furthermore that there is another equivalence class Qr ∈ Vr/∼r contained
in the bubble of Qt such that Cr has demand to the future neighbors of Qr. Then, this demand
must be fulfilled by a neighbor of Qr in Cs for otherwise, the equivalence class Qt both contains
vertices of Ct and Ct has demand to the future neighbors of Qt. The resulting partial b-coloring
would not be representable.

The following definition formalizes this discussion and projects it down to the ‘type level’; we
illustrate this notion in Figure 4.

Definition 3.9 (Compatible types). LetG be a graph with rooted branch decomposition (T,L).
Let furthermore t ∈ V (T ) \ L(T ) with children r and s, and let (Ht, ηr, ηs) be the operator of t.
Let (φr, ξr) ∈ typesr and (φs, ξs) ∈ typess. We say that (φr, ξr) and (φs, ξs) are compatible if the
following conditions hold.

(i) ξr + ξs ≤ 1.
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(ii) There is no pair Qr ∈ Vr/∼r, Qs ∈ Vs/∼s such that QrQs ∈ E(Ht) and φr(Qr) = φs(Qs) =
cont.

(iii) For each Q ∈ Vt/∼t such that there exists a p ∈ {r, s} and a Qp ∈ η−1p (Q) with φp(Qp) = cont,
the following holds.

(a) For all Qr ∈ η−1r (Q) with φr(Qr) = dem, there is a Qs ∈ Vs/∼s with φs(Qs) = cont and
QrQs ∈ E(Ht).

(b) Similarly, for all Qs ∈ η−1s (Q) with φs(Qs) = dem, there is a Qr ∈ Vr/∼r with φr(Qr) =
cont and QsQr ∈ E(Ht).

Given a pair of a color class Cr of a partial b-coloring of Gr and a color class Cs of a partial
b-coloring of Gs whose types in the respective colorings are compatible, Cr ∪ Cs, considered as a
color class in a partial b-coloring of Gt, has a fixed type. We prove this later in the lemmas that
attest the correctness of the algorithm, but we already describe the construction of this type here,
mainly since the notion of compatibility of signatures that we give below, requires this ‘merge type’.

Definition 3.10 (Merge Type). Let G be a graph with rooted branch decomposition (T,L).
Let furthermore t ∈ V (T ) \ L(T ) with children r and s, and let (Ht, ηr, ηs) be the operator of t.
Let ρ = (φr, ξr) ∈ typesr and σ = (φs, ξs) ∈ typess be a pair of compatible types. The merge type
of ρ and σ, denoted by µ(ρ, σ), is the following t-type (φt, ξt).

(i) ξt = ξr + ξs.

(ii) For each Q ∈ Vt/∼t:

(a) If for some p ∈ {r, s}, there exists a Qp ∈ η−1p (Q) with φp(Qp) = cont, then φt(Q) = cont.

(b) If (ii.a) does not apply and for some p ∈ {r, s} there exists a Qp ∈ η−1p (Q) with φp(Qp) =
dem and for o ∈ {r, s} \ {p} and all QpQo ∈ E(Ht) we have φo(Qo) 6= cont, then
φt(Q) = dem.

(c) If neither (ii.a) nor (ii.b) applies, then φt(Q) = none.

Towards a notion of compatibility of signatures, we first define a structure we call merge skeleton.
Given a node t ∈ V (T ) with children r and s, the merge skeleton is an edge-labeled bipartite graph
whose vertices are the r-types and the s-types, with the merge type of a compatible pair of types
ρ ∈ typesr, σ ∈ typess written on the edge ρσ. Such an edge is meant to represent the fact that
taking the union of a color class Cr that has r-type ρ in a partial b-coloring of Gr with a color class
Cs that has s-type σ in a partial b-coloring of Gs results in a color class of t-type µ(ρ, σ) in the
partial b-coloring of Gt that results from merging the partial b-colorings of Gr and Gs.

Definition 3.11 (Merge skeleton). Let G be a graph and (T,L) one of its rooted branch de-
compositions. Let t ∈ V (T ) \ L(T ) with children r and s. The merge skeleton of r and s is an
edge-labeled bipartite graph (J,m) where

• V (J) = typesr ∪ typess,

• for all ρ ∈ typesr, σ ∈ typess, ρσ ∈ E(J) if and only if ρ and σ are compatible, and

• m : E(J)→ typest is such that for all ρσ ∈ E(J), m(ρσ) is the merge type of ρ and σ.
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Using the merge skeleton, we want to find out how to construct a t-signature of a partial b-
coloring of Gt that is obtained from a pair of a partial b-coloring for Gr and one for Gs, knowing
only their signatures. Any pair of an r-signature sigr and an s-signature sigs can ‘flesh out’ the
merge skeleton (J,m) of r and s, in the following sense. We can obtain a map labeling the vertices
of J that follows sigr on typesr and sigs on typess. Then, an edge-labeling n of J with integers from
{0, 1, . . . , k}, such that for each vertex of J, the sum over its incident edges e of n(e) is equal to its
vertex label, produces a t-signature sigt. We can read off how many color classes of each type there
are from the edge labeling n. In fact, each t-signature can be produced in such a way, as we prove
below.

Definition 3.12 (Compatible signatures). Let (T,L) be a rooted branch decomposition. Let
furthermore t ∈ V (T ) \ L(T ) with children r and s. Let sigt be a t-signature, let sigr be an r-
signature and sigs be a s-signature. We say that (sigt, sigr, sigs) is compatible if there is a triple
(J,m, n) such that (J,m) is the merge skeleton of r and s, and n : E(J) → {0, 1, . . . , k} is a map
with the following properties.

(i) For all p ∈ {r, s} and all π ∈ typesp,
∑

e∈E(J) : π∈e n(e) = sigp(π).

(ii) For all τ ∈ typest,
∑

e∈E(J) : m(e)=τ n(e) = sigt(τ).

We first show that we can test efficiently whether a triple of signatures is compatible.

Lemma 3.13. Let G be a graph on n vertices and let (T,L) be one of its rooted branch decom-
position of module-width w = mw(T,L). Let t ∈ V (T ) \ L(T ) with children r and s. Let sigt be

a t-signature, sigr be an r-signature, and sigs be an s-signature. One can decide in time n2
O(w)

whether or not (sigt, sigr, sigs) is compatible.

Proof. We first observe that the merge skeleton can be constructed in 2O(w) time, where w =
mw(T,L): It is easy to see that given two types ρ ∈ typesr, σ ∈ typess, we can decide whether or not
ρ and σ are compatible in time wO(1). Moreover, by Observation 3.3, |typesr| ≤ 2O(w) and |typess| ≤
2O(w), therefore we have to check for (2O(w))2 = 2O(w) pairs of types if they are compatible, and if
so, compute their merge type. (This also implies that |E(J)| = 2O(w).) Computing a merge type
can be done in time wO(1) as well, simply by following the construction given in Definition 3.10.

We brute-force all candidates for the labeling n. Given such a candidate, we can verify in time
2O(w) if it satisfies parts (i) and (ii) of the definition of compatible signatures. Since |E(J)| = 2O(w),

a trivial upper bound on the number of such candidate labelings is n2
O(w)

and therefore the claimed
bound follows. �

3.4 Merging and Splitting Partial b-Colorings

In this section we show that the notions introduced above work as desired, and the technical lemmas
we prove here will be the cornerstone of the correctness proof of the resulting algorithm that we
give later.

3.4.1 Bottom to Top

Lemma 3.14. Let G be a graph with rooted branch decomposition (T,L) and let t ∈ V (T ) \ L(T )
be an internal node with children r and s. Let sigr be an r-signature, sigs be an s-signature, and
sigt be a t-signature such that:

• For all p ∈ {r, s}, there is a partial b-coloring (Cp, Bp) in Gp that is represented by sigp, and
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• (sigt, sigr, sigs) is compatible.

Then, there is a partial b-coloring (Ct, Bt) of Gt that is represented by sigt.

Proof. Let (J,m, n) be the structure witnessing that (sigt, sigr, sigs) is compatible. We use Algo-
rithm 1 to create the pair (Ct, Bt). We first show that (Ct, Bt) is indeed a partial b-coloring of Gt,
and then later that sigt represents (Ct, Bt).

Input : (Cr, Br), (Cs, Bs), J, and n as above
Output: (Ct, Bt), where Ct is a partition of Vt and Bt ⊆ Vt.

1 C′r ← Cr, C′s ← Cs, Ct ← ∅;
2 foreach ρ ∈ typesr, σ ∈ typess with ρσ ∈ E(J) do
3 Let x← n(ρσ);
4 for i = 1, . . . , x do
5 Let Cr ∈ C′r be of r-type ρ and Cs ∈ C′s be of s-type σ;
6 Ct ← Ct ∪ {Cr ∪ Cs};
7 C′r ← C′r \ {Cr}, C′s ← C′s \ {Cs};
8 return (Ct, Br ∪Bs);

Algorithm 1: Merging (Cr, Br) and (Cs, Bs) according to J and n.

Claim 3.14.1. (Ct, Bt) as constructed above is a partial b-coloring of Gt with k colors.

Proof. Since Cr is a partition of Vr and Cs is a partition of Vs, and each part of Cr and Cs is used
precisely once to obtain a part of Ct in Algorithm 1, it is clear by Definition 3.12((i)) that Ct is a
partition of Vt. Together with Definition 3.12((ii)) and the definition of a t-signature, this ensures
that Ct has k parts.

We argue that each part C ∈ Ct is an independent set. Suppose for a contradiction that C is
not an independent set and let uv ∈ E(Gt) be an edge with u, v ∈ C. By construction, there are
Cr ∈ Cr and Cs ∈ Cs such that C = Cr ∪ Cs. Moreover, since Cr and Cs are color classes in a
coloring, they are independent sets, so we may assume that u ∈ Cr and v ∈ Cs (up to renaming).
For all p ∈ {r, s}, let τp = (φp, ξp) be the p-type of Cp in (Cp, Bp). Let furthemore Qr ∈ Vr/∼r be
the equivalence class of ∼r containing u and Qs ∈ Vs/∼s be the equivalence class of ∼s containing
v. This means that φr(Qr) = φs(Qs) = cont. For u and v to be adjacent, the edge QrQs has to be
present in Ht. On the other hand, τrτs is an edge of the merge skeleton which implies that τr and
τs are compatible types; in which case Definition 3.9((ii)) forbids the presence of this edge in Ht,
a contradiction.

We have shown that Ct is a proper coloring of Gt, it remains to show that for all C ∈ Ct,
|C ∩ Bt| ≤ 1. Suppose for a contradiction that for some C ∈ Ct, |C ∩ Bt| > 1, and let Cr ∈ Cr,
Cs ∈ Cs be such that C = Cr ∪Cs, as per Algorithm 1. Since for all p ∈ {r, s}, (Cp, Bp) is a partial
b-coloring of Gp, we have that |Cp ∩Bp| ≤ 1, and clearly Cr ∩Bs = Cs ∩Br = ∅. This means that
|Cr ∩Br| = |Cs ∩Bs| = 1; and in the r-type (φr, ξr) of Cr in (Cr, Br) and the s-type (φs, ξs) of Cs
in (Cs, Bs), ξr = ξs = 1. But again, (φr, ξr) and (φs, ξs) are compatible, so by Definition 3.9((i)),
ξr + ξs ≤ 1, a contradiction. y

To prove the lemma, it remains to show that the t-signature sigt represents (Ct, Bt). This is
shown via the following claim, with Definition 3.12 ensuring that the numbers work out.
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Claim 3.14.2. Let Cr ∈ Cr and Cs ∈ Cs, and let τr = (φr, ξr) be the r-type of Cr in (Cr, Br), and
let τs = (φs, ξs) be the s-type of Cs in (Cs, Bs), such that Ct = Cr ∪ Cs is a color class in (Ct, Bt).
Then, the t-type of Ct in (Ct, Bt) is µ(τr, τs).

Proof. First observe that if Ct = Cr ∪ Cs is a color class in (Ct, Bt), then τr and τs are compatible
by construction. Let τt = (φt, ξt) = µ(τr, τs). We have to argue that the t-type of Ct in (Ct, Bt) is
indeed (φt, ξt).

For the first item of the definition of the merge type, we observe that ξr+ξs = |Cr∩Br|+|Cs∩Bs|
and since Bt = Br ∪Bs and Ct = Cr ∪ Cs, we have ξt = ξr + ξs = |Ct ∩Bt|.

Now let Q ∈ Vt/∼t. Suppose that φt(Q) = cont; we have to argue that Ct ∩ Q 6= ∅ and that
there is no vertex v ∈ (Bt \ Ct) ∩ Q with N(v) ∩ Ct = ∅. By the definition of the merge type,
there is some p ∈ {r, s} such that there is a Qp ∈ Vp/∼p with ηp(Qp) = Q and φp(Qp) = cont.
Since Cp has p-type (φp, ξp) in (Cp, Bp), Cp ∩Qp 6= ∅ which implies that Ct ∩Q 6= ∅. Now suppose
that there is some vertex v ∈ (Bt \ Ct) ∩ Q with N(v) ∩ Ct = ∅. This means that there is some
p ∈ {r, s} and some Qp ∈ η−1p (Q) such that v ∈ Qp, and N(v) ∩ Cp = ∅. Since Cp has a p-type in
(Cp, Bp), this means that Cp ∩Qp = ∅ and therefore φp(Qp) = dem. Assume wlog that p = r. Since
(φr, ξr) and (φs, ξs) are compatible, we have by Definition 3.9((iii)) that there is some Qs ∈ Vs/∼s
with φs(Qs) = cont and QrQs ∈ E(Ht). But this implies that v has a neighbor in Cs ⊆ Ct, a
contradiction.

Now suppose that φt(Q) = dem. By the definition of the merge type, we have that in this case:

(i) For any p ∈ {r, s} and Qp ∈ Vp/∼p with ηp(Qp) = Q, φp(Qp) 6= cont.

(ii) We may assume (up to renaming) that for some Qr ∈ η−1r (Q), φr(Qr) = dem,

(iii) and that for all QrQs ∈ E(Ht), φs(Qs) 6= cont.

From (i) we derive that Ct ∩ Q = ∅. Next, (ii) implies that there is a vertex v ∈ (Br \ Cr) ∩ Qr
with N(v) ∩ Cr = ∅, and by (iii), we can conclude that v has no neighbor in Cs either. Therefore,
v has no neighbor in Ct, as required.

Finally, suppose that φt(Q) = none. Again then there is no Qp ∈ η−1(Q) such that φp(Qp) =
cont. If for all p ∈ {r, s} and all Qp ∈ η−1p (Q), φp(Qp) = none, then it is clear that Ct ∩Q = ∅, and
that there is no v ∈ (Bt \ Ct) ∩Q with N(v) ∩ C = ∅. So suppose (up to renaming) that for some
Qr ∈ η−1r (Q), φr(Qr) = dem, implying that there is a vertex v ∈ (Br \Cr)∩Qr with N(v)∩Cr = ∅.
Since we did not land in case (ii.b) of the definition of a merge type, there is some QrQs ∈ E(Ht)
such that φs(Qs) = cont, which means v has a neighbor in Cs ⊆ Ct. Since this holds for any such
Qr (and Qs), we can conclude that there is no vertex in (Bt \ Ct) ∩ Q with N(v) ∩ Ct = ∅. This
concludes the proof. y

This concludes the proof of Lemma 3.14. �

3.4.2 Top to Bottom

Lemma 3.15. Let G be a graph with rooted branch decomposition (T,L) and let t ∈ V (T ) \ L(T )
be an internal node with children r and s. Let sigt be a t-signature, and suppose there is a partial
b-coloring (Ct, Bt) of Gt which is represented by sigt. Then, there exists an r-signature sigr and an
s-signature sigs such that

• for all p ∈ {r, s} there is a partial b-coloring (Cp, Bp) represented by sigp, and

• (sigt, sigr, sigs) is compatible.
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Proof. For all p ∈ {r, s}, we let Cp ..= Ct|Vp and Bp ..= Bt ∩ Vp. It is clear that (Cp, Bp) is a partial
b-coloring of Gp.

Claim 3.15.1. For all p ∈ {r, s}, (Cp, Bp) is represented by some p-signature.

Proof. Suppose the claim is false for p = r. Then there is some Cr ∈ Cr that has no r-type in
(Cr, Br), meaning that for some Qr ∈ Vr/∼r, Qr ∩Cr 6= ∅ and there is a vertex v ∈ (Br \Cr) ∩Qr
with N(v)∩Cr = ∅. By construction, there is a Ct ∈ Ct with Ct = Cr ∪Cs for some Cs ⊆ Vs. Since
(Ct, Bt) is representable, and ηr(Qr) ∩ Ct 6= ∅, we know that N(v) ∩ Ct 6= ∅ (otherwise, Ct has no
t-type in (Ct, Bt)). Therefore, N(v)∩Cs 6= ∅. But since all vertices in Qr are twins with respect to
Vs, and since Cr ∩Qr 6= ∅ and v ∈ Qr, this means that there is an edge between some vertex in Cr
and some vertex in Cs, contradicting the fact that Ct is an independent set. y

By the previous claim, we know that (Cr, Br) is represented by some r-signature sigr and
that (Cs, Bs) is represented by some s-signature sigs. It remains to show that (sigt, sigr, sigs) is
compatible. To be able to argue this, we show that each t-type with non-zero value in sigt appears
as an edge label of the merge skeleton (J,m) of r and s, in particular that it is the merge type of
the r-type and s-type labeling the endpoints of this edge.

Claim 3.15.2. Let Ct ∈ Ct be a color class whose t-type in (Ct, Bt) is τt = (φt, ξt). Let τr = (φr, ξr)
be the r-type of Cr ..= Ct ∩ Vr in (Cr, Br), and let τs = (φs, ξs) be the s-type of Cs ..= Ct ∩ Vs in
(Cs, Bs). Then, τr and τs are compatible and τt = µ(τr, τs).

Proof. We first show that τr and τs are compatible. We know that ξt ∈ {0, 1} and that ξt = 1 if
and only if |Ct ∩ Bt| = 1 if and only if either |Cr ∩ Br| = 1 or |Cs ∩ Bs| = 1 if and only if either
ξr = 1 or ξs = 1, therefore ξr + ξs ≤ 1, meaning that condition (i) of the definition of compatibility
is satisfied. Since Ct is an independent set, there are no edges between Cr and Cs. This means
that for any pair Qr ∈ Vr/∼r, Qs ∈ Vs/∼s with φr(Qr) = φs(Qs) = cont, QrQs /∈ E(Ht), otherwise
there would be an edge between Cr and Cs, so condition (ii) is satisfied as well.

Now suppose that Definition 3.9((iii)) is violated. We may assume (up to renaming) that there
is some Q ∈ Vt/∼t with the following properties. There is a Q∗r ∈ η−1r (Q) with φr(Q

∗
r) = cont,

meaning that Cr ∩ Q∗r 6= ∅ and so Ct ∩ Q 6= ∅. Moreover, there is some Qr ∈ η−1r (Q) with
φr(Qr) = dem, where for any QrQs ∈ E(Ht), φs(Qs) 6= cont. This means that there is a vertex
v ∈ (Br \ Cr) ∩ Qr such that N(v) ∩ Cr = ∅, and moreover that N(v) ∩ Cs = ∅, implying that
N(v) ∩ Ct = ∅. Note that v ∈ (Bt \ Ct) ∩ Qt. In other words, we have argued that Q is an
equivalence class of ∼t such that Ct ∩ Q 6= ∅ and there is a vertex v ∈ (Bt \ Ct) ∩ Q such that
N(v) ∩ Ct = ∅. But this means that the color class Ct cannot have a t-type in (Ct, Bt), so (Ct, Bt)
was not representable, a contradiction.

Now we argue that τt, the t-type of Ct in (Ct, Bt), is indeed the merge type of τr and τs. We
already argued above that ξt = ξr + ξs. Now let Q ∈ Vt/∼t, and suppose that φt(Q) = cont. This
means that Q∩Ct 6= ∅. We may assume (up to renaming) that u ∈ Qr ∩Cr for some Qr ∈ η−1r (Q).
Since (Cr, Br) is representable by Claim 3.15.1 this already implies that φr(Qr) = cont, therefore
φt(Q) is set in accordance with the definition of the merge type.

Now suppose that for some Q ∈ Vt/∼t, φt(Q) = dem. Then, Q ∩ Ct = ∅ and there is some
v ∈ (Bt \ Ct) ∩ Q such that N(v) ∩ Ct = ∅. First, since Q ∩ Ct = ∅, this immediately implies
that for all p ∈ {r, s} and all Qp ∈ η−1p (Q), Qp ∩ Cp = ∅ and therefore φp(Qp) 6= cont. Now for
p ∈ {r, s}, let Qp be the equivalence class of ∼p containing v. We may assume (up to renaming)
that p = r. Clearly, ηr(Qr) = Q, therefore Qr ∩ Cr = ∅. Moreover, N(v) ∩ Cr = ∅, and we have
that φr(Qr) = dem. Now suppose for a contradiction that for some QrQs ∈ E(Ht), φs(Qs) = cont.
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This implies that N(v) ∩ Cs 6= ∅, and therefore N(v) ∩ Ct 6= ∅, a contradiction. We have shown
that also in this case, φt(Q) is set in accordance with the definition of the merge type.

Finally, suppose that φt(Q) = none. Then, Q ∩ Ct = ∅ and there is no v ∈ (Bt \ Ct) ∩ Q
with N(v) ∩ Ct = ∅. This immediately implies that for all p ∈ {r, s} and all Qp ∈ η−1(Q),
φp(Qp) 6= cont. Suppose that for some p ∈ {r, s} and some Qp ∈ η−1p (Q), φp(Qp) = dem, and
assume (up to renaming) that p = r. This means that there is some vertex u ∈ (Br \ Cr) ∩ Qr
with N(u) ∩ Cr = ∅. On the other hand, we know that N(u) ∩ Ct 6= ∅, so u has a neighbor in Cs.
This means that there is a QrQs ∈ E(Ht) such that Qs ∩ Cs 6= ∅, meaning that φs(Qs) = cont.
Therefore, φt(Q) is also set in accordance with the definition of the merge type. y

To finish the proof, we have to construct an edge labeling n : E(J)→ {0, 1, . . . , k} satisfying the
conditions of Definition 3.12. The previous claim tells us that we can construct n in a straightfor-
ward way. Initially, set n(τt) = 0 for all τt ∈ typest. For each color class Ct ∈ Ct whose t-type in
(Ct, Bt) is τt, we know that the r-type of Cr ..= Ct ∩ Vr, say τr, and the s-type of Cs ..= Ct ∩ Vs, say
τs, are such that τt = m(τrτs), i.e. τt appears as the label of the edge between τr and τs in J. We
therefore increase the value of n(τrτs) by one. Once we did this for all color classes of (Ct, Bt), the
tuple (J,m, n) satisfies the requirements of Definition 3.12, so (sigt, sigr, sigs) is compatible. �

3.5 The Algorithm

As alluded to above, the algorithm is bottom-up dynamic programming along the given rooted
branch decomposition (T,L) of G. First, we define the table entries stored at each node.

Definition of the table entries. For a node t ∈ V (T ) and a t-signature sigt, we let tab[t, sigt] = 1
if and only if there exists a partial b-coloring of Gt that is represented by sigt.

We now show that if all table entries have been computed correctly, then the solution can be
read off the table entries stored at the root r of the given rooted branch decomposition. Observe
that since Vr = V (G) and therefore Vr = ∅, the equivalence relation ∼r has one equivalence class,
namely V (G).

Lemma 3.16. Let G be a graph with rooted branch decomposition (T,L) and let r ∈ V (T ) be the
root of T . Let ρ be the r-type (φr, ξr) with ξr = 1 and φr(V (G)) = cont. Let sigr be the r-signature
letting sigr(ρ) = k. Then, G has a b-coloring with k colors if and only if tab[r, sigr] = 1.

Proof. Suppose that G has a b-coloring (C, B) with k colors. Then, (C, B) is also a partial b-coloring;
but since all vertices in B are already b-vertices for their color, all demands have been fulfilled.
This means that (C, B) is representable by an r-signature, denote this r-signature by sig. We argue
that sig = sigr, in particular that all color classes C ∈ C are of type ρ = (φr, ξr) in (C, B) as in the
statement of the lemma. Let C ∈ C be any color class. Since (C, B) is a b-coloring, B contains
a b-vertex v of C, therefore also C 6= ∅ which implies that the r-type of C is indeed ρ. As this
reasoning applies to all k color classes of (C, B), we can conclude that tab[r, sigr] = 1.

Now suppose for the other direction that tab[r, sigr] = 1. Then there is a partial b-coloring
(C, B) of Gr = G with k colors represented by sigr. Since (φr, ξr) is the type of each color class
and ξr = 1, each color class has a partial b-vertex; since no color class has demand to the future
neighbors of V (G) by φr, each partial b-vertex is indeed a b-vertex for its color. Therefore, C is a
b-coloring of G with k colors. �

We describe how to compute the table entries, starting with the leaves of T .
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Leaves of T . Let t ∈ V (T ) be a leaf node of T and let v ∈ V (G) be the vertex such that L(v) = t.
We show how to set the table entries tab[t, ·]. The partial b-colorings of Gt = ({v}, ∅) we have to
consider are the following. The vertex v is colored with one of the k colors, and it is either the
partial b-vertex for its color or not.

The t-signatures representing these colorings look as follows. Observe that ∼t has precisely one
equivalence class, namely {v}. We let φcont be the map with φcont({v}) = cont. In the case that v
is not the partial b-vertex of its color, we have

• one color of type (φcont, 0), and

• k − 1 colors of type (φ∅, 0) with φ∅({v}) = none.

We denote this signature by sig1, i.e. we let sig1((φcont, 0)) = 1 and sig1((φ∅, 0)) = k − 1.
In the case that v is the partial b-vertex of its color class, then the remaining k−1 color classes

have demand to the future neighbors of {v}, so that v eventually becomes the b-vertex of its color.
Therefore we have

• one color of type (φcont, 1), and

• k − 1 colors of type (φdem, 0) with φdem({v}) = dem.

We denote this signature by sig2, i.e. we let sig2((φcont, 1)) = 1 and sig2((φdem, 0)) = k − 1. To
summarize, for each t-signature sig, we let

tab[t, sig] ..=

{
1, if sig ∈ {sig1, sig2}
0, otherwise

Next, the internal nodes of T .

Internal nodes of T . Now let t ∈ V (T ) \ L(T ) with children r and s. For each t-signature sigt,
we let tab[t, sigt] = 1 if and only if there exists a pair (sigr, sigs) of an r-signature sigr and an
s-signature sigs such that

(i) tab[r, sigr] = 1 and tab[s, sigs] = 1, and

(ii) (sigt, sigr, sigs) is compatible.

Equipped with the lemmas of the previous sections, we can prove correctness of the above
algorithm.

Lemma 3.17. For each t ∈ V (T ) and t-signature sigt, the above algorithm computes the table
entry tab[t, sigt] correctly.

Proof. We prove the lemma by induction on the height of t. For the base case, when t is a leaf, it
is easily verified. From now on we may assume that t ∈ V (T ) \ L(T ) with children r and s.

First, suppose that the algorithm set tab[t, sig] = 1. This means that there is a pair (sigr, sigs)
of an r-signature sigr and an s-signature sigs such that tab[r, sigr] = 1 and tab[s, sigs] = 1 and
(sigt, sigr, sigs) is compatible. By induction, we know that there is a partial b-coloring of Gr rep-
resented by the r-signature sigr and a partial b-coloring of Gs represented by the s-signature sigs.
Then, by Lemma 3.14, there is a partial b-coloring of Gt represented by the t-signature sigt.

Conversely, suppose that there is a partial b-coloring of Gt represented by the t-signature sigt.
Then, by Lemma 3.15, there is a partial b-coloring of Gr represented by an r-signature sigr and a
partial b-coloring of Gs represented by an s-signature sigs, such that (sigt, sigr, sigs) is compatible.
By induction, the algorithm set tab[r, sigr] = 1 and tab[s, sigs] = 1, and therefore, by the above
description, it set tab[t, sigt] = 1. �
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We wrap up. By Lemma 3.17, the algorithm computes all table entries correctly, and by
Lemma 3.16, the solution to the instance can be determined upon inspecting the table entries
associated with the root of the given branch decomposition. Correctness of the algorithm follows.

Regarding the runtime, we observe the following. Given an n-vertex graph with rooted branch
decomposition (T,L) of module-width w = mw(T,L), we have that |V (T )| = O(n). (T is a full
binary tree on n leaves, so |V (T )| = 2n− 1.) Let t ∈ V (T ). If t is a leaf node, then computing the
table entries tab[t, ·] takes constant time. If t is an internal node, then by Observation 3.6, we have

to compute n2
O(w)

table entries. Assume by induction that the table entries associated with the

children of t have been computed. For each t-signature sigt we have to try for
(
n2
O(w)

)2
= n2

O(w)

pairs of one signature per child whether or not they form a compatible triple together with sigt.

For each triple, this can be done in time n2
O(w)

by Lemma 3.13. Therefore, the overall runtime of
the algorithm is n2

O(w)
.

Theorem 3.18. There is an algorithm that solves b-Coloring in time n2
O(w)

, where n denotes
the number of vertices of the input graph, and w denotes the module-width of a given rooted branch
decomposition of the input graph.

3.6 Fall Coloring

Recall that a fall coloring is a special type of b-coloring where every vertex is a b-vertex for its
color. In other words, it is a partition of the vertex set of a graph into independent dominating
sets. We adapt our algorithm for b-Coloring on graphs of bounded clique-width to solve Fall
Coloring, and therefore show that the latter problem is as well solvable in time n2

O(w)
, where w

denotes the clique-width of a given decomposition of the input graph.

Adaptation of the b-Coloring Algorithm

We now show how to adapt the algorithm of Theorem 3.18 to solve the Fall Coloring problem
in time n2

O(w)
as well. This adaptation in some sense simplifies the algorithm for b-Coloring,

since we do no have to keep track of whether or not a color class has a b-vertex in a partial coloring;
every vertex has to be a b-vertex. Now, if we can construct a coloring such that each color class
is nonempty, and each vertex is a b-vertex for its color, then clearly we have a fall coloring. With
small modification, the mechanics of our algorithm for b-Coloring allow for checking if there is
a coloring with this property. The main difference will be in the definition of the type of a color
class.

Let (C1, . . . , Ck) be a proper coloring of Gt for some node t, and Ci and Cj be two distinct
color classes. If for some Q ∈ Vt/∼t, Ci ∩ Q = ∅, and there is any vertex vj ∈ Cj such that
N(vj) ∩ Ci = ∅, then Ci has demand to the future neighbors of Q: the vertex vj needs to become
a b-vertex of color j, and since it has no neighbor in color class i so far, one of its future neighbors
(equivalently, a future neighbor of equivalence class Q), has to receive color i.

The definition of a t-fall type can be obtained from the definition of a t-type by dropping the
bit ξ which becomes unnecessary in the context of Fall Coloring.

The definition of a color class being of a certain t-fall type becomes the following.

Definition 3.19 (t-Fall-type). Let G be a graph with rooted branch decomposition (T,L), and
let t ∈ V (T ). A t-fall type is a map φ : Vt/∼t → {none, cont, dem}.

Let C = (C1, . . . , Ck) be a proper coloring of Gt, and let φ be a t-fall type. For i ∈ {1, . . . , k},
we say that Ci has t-fall type φ in C if for each Q ∈ Vt/∼t,
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(i) if Q ∩ Ci 6= ∅ and for all v ∈ Q \ Ci, N(v) ∩ Ci 6= ∅, then φ(Q) = cont,

(ii) if Q ∩ Ci = ∅ and there is a v ∈ Q \ Ci with NGt(v) ∩ Ci = ∅, then φ(Q) = dem, and

(iii) φ(Q) = none, otherwise.

We again restrict ourselves to finding (partial) colorings that are representable, in the sense
that there is no color class that both intersects an equivalence class and has demand to its future
neighbors. In complete analogy, we define a t-signature as a function counting the number of color
classes of each t-fall type.

We say that two fall-types are compatible, if they satisfy parts (ii) and (iii) of Definition 3.9,
the definition of compatible types in the case of b-Coloring. Part (i) simply disappears since we
do not have to keep track of whether or not a color class contains a partial b-vertex. With this in
mind, the technical arguments given in Section 3.4 go through.

The definition of the table entries is analogous as well, and by an argument parallel to the proof
of Lemma 3.16, we can conclude that this information is sufficient to solve the problem.

We discuss the resulting algorithm. For the leaf nodes, we only have to consider colorings
with one color class whose fall-type is φv({v}) = cont and k − 1 color classes whose fall-type is
φdem({v}) = dem. This is because in any fall-coloring of G, the vertex v has to be a b-vertex for
its color. The computation of the internal nodes remains the same. A correctness proof of the
algorithm can now be given in the same way as in the proof of Lemma 3.17, and the discussion of
the runtime of the algorithm still goes through. We have the following theorem.

Theorem 3.20. There is an algorithm that solves Fall Coloring in time n2
O(w)

, where n denotes
the number of vertices of the input graph, and w denotes the module-width of a given rooted branch
decomposition of the input graph.

Hardness

We now show that the runtime of the algorithm from Theorem 3.20 is optimal in some sense.
Specifically, we give a reduction that proves the same lower bounds as the ones we obtained for
b-Coloring. Recall again that linear module-width and linear clique-width can be used inter-
changeably in this setting (Theorem 2.3).

Proposition 3.21. The Fall Coloring problem on graphs on n vertices parameterized by the
module-width w of the input graph is W[1]-hard and cannot be solved in time n2

o(w)
, unless ETH

fails. Moreover, the hardness holds even when a linear branch decomposition of width w is provided.

Proof. We give a reduction from Graph Coloring parameterized by the module-width w of the
input graph which is W[1]-hard and has no n2

o(w)
-time algorithm under ETH [23, 24]. Given an

instance (G, k) construct a instance (H, k) of Fall Coloring as follows. We obtain H from G
by adding, for each vertex v ∈ V (G), a clique Xv on k − 1 vertices to the graph, and making Xv

complete to v.
If H has a fall coloring with k colors, then clearly this is a proper coloring of G with k colors,

since G is an induced subgraph of H. Suppose G has a proper coloring with k colors. For each
vertex v ∈ V (G), we can bijectively assign the k− 1 remaining colors (i.e. all colors except the one
appearing on v) to the vertices of Xv. The coloring constructed this way is a fall coloring of H
with k colors: First, we immediately observe that the coloring is proper. Since we started from a
proper coloring of G, there is no monochromatic edge in G. Since we colored the vertices of each
Xv bijectively with all colors except the one appearing on v, and since NH(Xv) ∩ V (G) = {v}, we
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did not introduce any monochromatic edge either. It remains to argue that each vertex of H is a
b-vertex for its color. For each v ∈ V (G), we have that v is a b-vertex since the remaining k − 1
colors appear on Xv. For each u ∈ Xv, we have that u is a b-vertex since it sees k − 2 colors on
Xv \ {u}, plus the color of v; since Xv ∪ {v} is a clique, all of these colors are mutually distinct.

The size of H is polynomial in the size of G, and it is clear that adding the cliques Xv did not
increase the module-width of G. �

4 Conclusion

In this work, we gave an XP-algorithm for b-Coloring parameterized by the clique-width of
a given decomposition of the input graph, and an FPT-algorithm parameterized by the vertex
cover number. This initiated the study of structural parameterizations of the b-Coloring and
b-Chromatic Number problems. The most prominent parameter sitting between clique-width
and the vertex cover number is arguably the treewidth of a graph. Since any graph of bounded
treewidth has bounded clique-width, our algorithm implies that b-Coloring parameterized by
treewidth is in XP. We therefore ask, is b-Coloring parameterized by the treewidth of the input
graph FPT or W[1]-hard?

It would be interesting to obtain an FPT-algorithm for b-Coloring parameterized by the vertex
cover number vc whose runtime is tight under ETH. Lokshtanov et al. [46] showed that Graph
Coloring has no 2o(vc log vc) · nO(1) time algorithm unless ETH fails, and by the same argument5

given in Proposition 3.1, this rules out 2o(vc log vc) · nO(1) time algorithms for b-Coloring under
ETH. We therefore ask if the runtime of 2O(vc

2) · nO(1) in Corollary 2.10 can be improved to
2O(vc log vc) · nO(1).

There are two main approaches for solving Graph Coloring parameterized by clique-width,
one being efficient when the number of colors is small [42], and the other being efficient when the
number of colors is large [21, 59]. Our algorithm for b-Coloring falls in the latter category. It
would be interesting to obtain an efficient algorithm for b-Coloring parameterized by clique-width
when the number is small, with a running time that is tight under the Strong Exponential Time
Hypothesis as it was done for Graph Coloring by Lampis [42]. Moreover, Courcelle et al. [14]
recently gave an algorithm that unifies both approaches into a single algorithm; is the same possible
for b-Coloring?

Acknowledgements. We would like to thank the anonymous reviewers for many valuable sug-
gestions that improved this work. We are particularly grateful for the suggestion to replace our
initial vertex cover based algorithm and the use of Courcelle’s Theorem by a single explicit DP
algorithm on graphs of bounded tree-width. This led to a cleaner and more precise presentation of
the result on chordal graphs as well as an improved algorithm parameterized by vertex cover.
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[51] Michaël Rao. Décompositions de graphes et algorithmes efficaces. PhD thesis, University of
Metz, 2006.
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