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Abstract

The b-Coloring problem, which given a graph G and an integer k asks whether G has a
proper k-coloring such that each color class has a vertex adjacent to all color classes except
its own, is known to be FPT parameterized by the vertex cover number and XP and W[1]-hard
parameterized by clique-width. Its complexity when parameterized by the treewidth of the input
graph remained an open problem. We settle this question by showing that b-Coloring is XNLP-
complete when parameterized by the pathwidth of the input graph. Besides determining the
precise parameterized complexity of this problem, this implies that b-Coloring parameterized
by pathwidth is W[t]-hard for all t, and resolves the parameterized complexity of b-Coloring
parameterized by treewidth. We complement this result by showing that b-Coloring is FPT when
parameterized by neighborhood diversity and by twin cover, two parameters that generalize
vertex cover to more dense graphs, but are incomparable to pathwidth.

1 Introduction

A b-coloring of a graph G is a proper vertex-coloring such that each color class has a vertex, called
b-vertex, that has a neighbor in each color class except its own. This problem originated in the
study of the color-suppressing heuristic for the Graph Coloring problem: Start with any proper
coloring of G, and keep on suppressing color classes as long as you can. Here, a color class C can
be suppressed, if for each vertex with color C, there is a color C ′ ̸= C that does not yet appear in
its neighborhood. This allows us to recolor all vertices in C and thereby lower the number of colors
by one. The colorings which do not allow for further improvements are exactly the b-colorings, so
the largest integer k such that a graph G admits a b-coloring with k colors determines the worst-
case behavior of this heuristic, when applied to G. This quantity is referred to as the b-chromatic
number. In this work, we study the following decision problem related to b-colorings. For more
details on computational problems associated with b-colorings, we refer to [21, 22, 27].

∗This work received funding from the Independent Research Fund Denmark grant agreement number 2098-00012B
(PL).
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Input: Graph G, integer k
Question: Does G have a b-coloring with k colors?

b-Coloring

This problem is known to be NP-complete, even when the number of colors is fixed [21]. The
complexity of b-Coloring has been studied on several graph classes, see for instance [8, 9, 10, 11,
19, 21, 25, 28]. Recent work also considered first structural parameterizations: Jaffke, Lima, and
Lokshtanov [22] showed that b-Coloring is FPT when parameterized by the vertex cover number
of the input graph, and XP and W[1]-hard when parameterized by clique-width. Arguably the
most prominent parameter (between the vertex cover number and the clique-width) is treewidth.
Parameterized by treewidth plus the number of colors, b-Coloring is FPT [1, 22]. However, in
the setting when the number of colors is part of the input, the parameterized complexity of b-
Coloring by treewidth remained open. In fact, this problem has already been stated explicitly
over a decade ago, see for instance [27]. Observe that even n-vertex forests can have b-colorings
with

√
n colors (think of a forest where each of the

√
n components is a star with

√
n− 1 leaves).

The first main result of this work is to resolve this open problem, showing hardness. We prove a
stronger hardness result than W[1]-hardness by treewidth, namely XNLP-completeness by the more
restrictive parameter pathwidth. The class XNLP has recently been coined by Bodlaender et al. [6],
derived from earlier work of Elberfeld, Stockhusen, and Tantau [14], as a means of addressing the
question of completeness of parameterized problems. XNLP is the class of parameterized problems
that can be solved by a nondeterministic algorithm using f(k) · nc time and f(k) · log n space,
where k is the parameter, n the input size, c a constant, and f a computable function. Several
parameterized problems have been shown to be XNLP-complete [4, 5, 6], most relevant for our
work problems parameterized by linear width measures [4, 5]. While XNLP-hardness reductions
are often very similar to reductions proving W-hardness, they yield a much stronger result. As
XNLP contains the entire W-hierarchy [6], XNLP-hardness implies W[t]-hardness for all t ∈ N.

Theorem 1. b-Coloring parameterized by pathwidth is XNLP-complete, and therefore W[t]-hard
for all t ∈ N.

Notice that the previous theorem implies that b-Coloring parameterized by treewidth or by
clique-width is W[t]-hard for all t ∈ N, therefore resolving the open question of the parameterized
complexity of b-Coloring parameterized by treewidth [22, 27], and significantly strengthening the
W[1]-hardness result by clique-width [22].

We complement Theorem 1 with two positive results about generalizations of the vertex cover
number. The FPT-algorithm parameterized by vertex cover of [22] essentially follows from two
observations. First, that the number of colors in any b-coloring of a graph with vertex cover
number t is bounded by a function of t. Second, that the treewidth is always at most the vertex
cover number. Therefore, the algorithm follows by an FPT-algorithm parameterized by treewidth
plus number of colors. The generalizations we consider here, neighborhood diversity and twin-
cover, both extend the vertex cover number to simply structured dense graphs; in particular,
complete graphs have twin-cover number 0 and neighborhood diversity 1. This means that in both
parameterizations, the number of colors in a b-coloring can be as high as Ω(n). Nevertheless, we
obtain FPT-algorithms in both cases.

Theorem 2. b-Coloring parameterized by the twin-cover number or by the neighborhood diversity
of a graph is fixed-parameter tractable.
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Figure 1: Known results about structural parameterizations of b-Coloring. Results marked with * can be
found in this work. The complexity of b-Coloring parameterized by modular-width remains open.

Lastly, we observe by two trivial reductions that the XP-algorithms parameterized by clique-
width cannot be extended to the more general width measures mim-width and twin-width. In
both cases, this follows directly from known hardness results of Graph Coloring on certain
graph classes. In the case of twin-width, this even holds when the number of colors is a fixed
constant. This stronger hardness result does not hold for mim-width, as b-Coloring is expressible
in DN logic by a sentence whose length depends only on the number of colors, and therefore XP
parameterized by the mim-width of a given decomposition plus the number of colors [3].

Observation 3. b-Coloring is NP-complete on graphs of linear mim-width 2, and on graphs of
twin-width at most 8. In the case of twin-width, para-NP-hardness even holds when the number of
colors is any fixed constant q ≥ 3.

We summarize these results in Figure 1. Note that the parameterization modular-width, which
is a common generalization of neighborhood diversity and twin-cover, remains open. The remainder
of the paper is organized as follows. In Section 2, we give the necessary background and definitions,
and justify Observation 3. In Section 3, we consider the parameterization by pathwidth and prove
Theorem 1, and in Sections 4 and 5 we consider neighborhood diversity and twin-cover, respectively,
to prove Theorem 2. We conclude in Section 6.

2 Preliminaries

Basic notations and definitions. For two integers a ≤ b we let [a..b] = {a, a + 1, . . . , b}, and
for a positive integer a, we let [a] = [1..a]. All graphs considered here are finite and simple. For
an (undirected or directed) graph G, we denote its vertex set by V (G) and its edge set by E(G).
For an edge {u, v} ∈ E(G), we use the shorthand “uv”. If G is a directed graph, then denoting
the edge e = (u, v) ∈ E(G) by uv also points to e being directed from u to v. Given an undirected

graph G, an orientation of G, denoted by
−→
G , is a directed graph obtained from G by replacing

each edge {u, v} ∈ E(G) by either (u, v) or (v, u). The neighborhood of a vertex v is defined as
N(v) = {u ∈ V (G) | uv ∈ E(G)}. The closed neighborhood of v is defined as N [v] = N(v) ∪ {v}.
The neighborhood of a set S ⊆ V (G) is defined similarly, that is, N(S) = {u ∈ V (G) \ S | us ∈
E(G) for some s ∈ S}. The closed neighborhood of S is N [S] = N(S) ∪ S. A set S ⊆ V (G) is
independent if for all pairs of distinct u, v ∈ S, uv /∈ E(G). A set C ⊆ V (G) is a clique if for all
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pairs of distinct u, v ∈ C, uv ∈ E(G). A star is an undirected graph with one special vertex called
the center that is adjacent to all of the remaining vertices, called leaves, which form an independent
set.

Colorings. A proper coloring with k colors of a graph G is a partition of V (G) into k independent
sets, called color classes. For a graph G and a proper coloring of G, a vertex v ∈ V (G) is a b-vertex
if it has a neighbor in all color classes except its own. A b-coloring with k colors of a graph G is
a proper coloring of G such that each color class contains a b-vertex. We call such a coloring a
k-b-coloring. In this work we consider the following problem.

Input: Graph G, integer k
Question: Does G have a b-coloring with k colors?

b-Coloring

2.1 Width measures

We now define the width measures relevant for this work and state some known facts about them
for completeness.

Definition 4 (Module, Modular Partition, Quotient Graph). A module of a graph G is a
set of vertices M ⊆ V (G) such that for all v ∈ V (G) \M , either M ⊆ NG(v) or M ∩NG(v) = ∅. A
partition P of V (G) is a modular partition if all parts of P are modules in G. The quotient graph
of P, denoted by G/P is the graph whose vertex set is P such that for all P,Q ∈ P, PQ ∈ E(G/P)
if P is complete to Q in G and PQ /∈ E(G/P) if P is anti-complete to Q in G.

Definition 5 (Neighborhood Diversity [26]). An ND-partition of a graph G is a modular par-
tition P of V (G) such that each part of P is either a clique (called a clique part) or an independent
set (called independent part) in G. The neighborhood diversity of a graph G is the minimum number
of parts in any ND-partition of G.

Remark 6. Note that the neighborhood diversity can also be defined as follows: for a graph G, say
that two vertices u, v are equivalent if N(u)\{v} = N(v)\{u}. Each equivalence class consists of a
complete part and an independent part which gives the optimal ND-partition in polynomial time.

Definition 7 (Twin Cover [16]). A set S ⊆ V (G) of a graph G is a twin cover, if for each edge
uv ∈ V (G), either (i) {u, v} ∩ S ̸= ∅, or (ii) or u and v are twins in G. The twin cover number of
G is the smallest size of any twin cover of G.

Observation 8. If S is a twin-cover of a graph G then each connected component of G − S is a
clique consisting of twins.

Let G be a graph and S a vertex cover of size k. It is clear that S is also a twin cover. Moreover,
for each A ⊆ S, let PA ⊆ V (G) \ S be the set of all vertices v with N(v) = A. Then, the partition
of V (G) consisting of all singletons of S plus the sets PA for all A ⊆ S is an ND-partition of G, so
G has neighborhood diversity at most k + 2k [26].

Neighborhood diversity and twin cover number are incomparable: consider for instance Kn,n, a
complete bipartite graph with n vertices on each side. The neighborhood diversity of Kn,n is two,
as the natural bipartition of its vertices is an ND-partition. On the other hand, each twin cover of
Kn,n has size at least n (it has to fully contain one of the sides).

4



Conversely, consider the windmill graph Wn with n petals, that is, a collection of n triangles
where each triangle has one special vertex that is identified with all other special vertices. The
Twin cover number of Wn is one (just take the vertex resulting from identifying all the special
vertices), while the neighborhood diversity of Wn is n + 1. For the lower bound, observe that no
two non-special vertices from distinct triangles can be in the same part of an ND-partition.

Definition 9. Let G be a graph. A path decomposition of G is a sequence B = B1, . . . , Bd of
subsets of V (G) called bags covering V (G) such that:

(i) For each edge e ∈ E(G), there is some i ∈ [d] such that e ⊆ Bi.

(ii) For each h, i, j ∈ [d] with h < i < j, Bh ∩Bj ⊆ Bi.

The width of B is maxi∈[d]|Bi| − 1, and the pathwidth of G is the smallest width of all its path
decompositions.

Membership in XNLP of b-Coloring parameterized by pathwidth will follow from the mem-
bership of b-Coloring parameterized by a linear width measure with more expressive power than
pathwidth, namely one that is equivalent to linear clique-width. We define it next and show its
relation to pathwidth.

Definition 10. Let G be a graph and S ⊆ V (G). The module number of S is the number of
equivalence classes of the equivalence relation ∼S defined as: u ∼S v ⇔ N(u) ∩ (V (G) \ S) =
N(v) ∩ (V (G) \ S). Let π = v1, . . . , vn be a linear order of V (G). The module-width of π is the
maximum, over all i, of the module number of {v1, . . . , vi}. The linear module-width of G is the
minimum module-width over all its linear orders.

Lemma 11. Let G be a graph and B be a path decomposition of G of width w. Then one can
construct in polynomial time and logarithmic space a linear order of module-width at most w + 2.

Proof. For each vertex v, let Bv be the leftmost bag (i.e., the bag with the smallest index) of B
containing v. Let π = v1, . . . , vn be a linear order of V (G) such that the bags Bv1 , . . . , Bvn appear
in the same order as in B, with ties broken arbitrarily. Clearly, this order can be constructed within
the claimed time and space bounds; we argue that it has module-width at most w + 2. By the
properties of a path decomposition, for each i ∈ [n], there are at most w+1 vertices in {v1, . . . , vi}
that have a neighbor in {vi+1, . . . , vn}. Therefore the module-number of each such {v1, . . . , vi} can
be at most w+2: w+1 for the aforementioned vertices and one for the vertices without neighbors
in {vi+1, . . . , vn}. □

2.1.1 Linear mim-width

For a graph G and a linear order λ = v1, . . . , vn of V (G), the mim-width of λ is the maximum, over
all i ∈ [n − 1], of the size of an induced matching in the bipartite subgraph of G consisting of all
edges that have one endpoint in {v1, . . . , vi} and the other in {vi+1, . . . , vn}. The linear mim-width
of a graph G is the minimum mim-width over all its linear orders. We observe that b-Coloring
parameterized by linear mim-width is para-NP-complete.

Observation 12. b-Coloring is NP-complete on graphs of linear mim-width 2.
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Proof. It is well-known that Graph Coloring is NP-complete on circular-arc graphs [18]. More-
over, Belmonte and Vatshelle [2] showed that given a circular-arc representation of a graph G, we
can construct a linear order of G of mim-width at most 2 in polynomial time.

We can now give a trivial reduction from Graph Coloring to b-Coloring as follows. Let
(G, k) be an instance of Graph Coloring, where G is a circular-arc graph, given with a circular-
arc representation. We obtain G′ from G by adding a k-clique. Then it is clear that G′ has a
b-coloring with k colors if and only if G has a proper coloring with at most k colors. Moreover,
given the circular-arc representation of G, we construct a linear order λ of mim-width at most 2
using [2]. We append the vertices of the k-clique in any order at the end of λ to obtain a linear
order λ′ of G′. Clearly, the mim-width of λ′ is again at most 2. □

2.1.2 Twin-width

We skip the definition of twin-width here, and refer the reader to [7].

Observation 13. For any k ≥ 3, the problem of determining if a graph G has a b-coloring with k
colors is NP-complete on graphs of twin-width at most 8.

Proof. We reduce from 3-Coloring on planar graphs, which is well-known to be NP-complete [17].
Let G be a planar graph, and k ≥ 3. Let G3 be the graph obtained from adding a triangle to G.
Now, we let G′ be a graph obtained from G3 by adding a (k − 3)-clique that is adjacent to all
vertices in V (G3). Then, G has a 3-coloring if and only if G′ has a b-coloring with k colors. Planar
graphs have twin-width at most 8 [20], and it is easy to see that adding a triangle or universal
vertices to a graph cannot increase the twin-width [7]. □

2.2 The class XNLP

We assume familiarity with the basic technical notions of parameterized complexity and refer
to [13] for an overview. The class XNLP, introduced as N [f poly, f log] by Elberfeld et al. [14],
consists of the parameterized decision problems that given an n-bit input with parameter k can be
solved by a non-deterministic algorithm that simultaneously uses at most f(k)nc time and at most
f(k) log n space, where f is a computable function and c is a constant. We refer to [6, 14] for more
details on this complexity class. Hardness in XNLP can be transferred via parameterized logspace
reductions [14] which are parameterized reductions in the traditional sense [13] with the additional
constraint of using only f(k)+O(log n) space, where once again k is the parameter of the problem
and n is the input size.

3 Pathwidth

We show b-Coloring is XNLP-complete via a reduction from the following problem which is known
to be XNLP-complete when parameterized by the width of a given path decomposition of the input
graph [4].

Input: Undirected graph G with edge weights w : E(G) → N given in unary.

Question: Is there an orientation
−→
G of G such that for every vertex v ∈ V (G):∑

vx∈E(
−→
G)

w(vx) =
∑

xv∈E(
−→
G)

w(xv)?

Circulating Orientation
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Theorem 14. b-Coloring parameterized by the width of a given path decomposition of the input
graph is XNLP-complete.

Proof. To show XNLP-hardness, we give a parameterized logspace-reduction from the Circulating
Orientation problem parameterized by the width of a given path decomposition of the input
graph, which was shown to be XNLP-complete in [4]. Let (G,w) be an instance of Circulating
Orientation, given with a path decomposition B of G. We let n = |V (G)|, m = |E(G)|, and
W =

∑
e∈E(G)w(e). For each vertex v ∈ V (G), we let Wv =

∑
uv∈E(G)w(uv). We may assume

that G is connected and that for all e ∈ E(G), w(e) ≥ 1; therefore W ≥ m ≥ n− 1.
We construct an equivalent instance (H, k) of b-Coloring. We let

k = 2W + 2m+ n+ 2. (1)

We begin the construction of H which is illustrated in Figure 2 by adding 2W + 2 disjoint copies
of a star with k − 1 leaves. Let S⋆ be one of these stars. We denote its center by s⋆ and refer to
it throughout the proof as the superstar. The remaining ones are referred to as anonymous. We
partition a subset of the leaves of S⋆ into L = {Le,v | e ∈ E(G), v ∈ e} where for all e ∈ E(G) and
v ∈ e, |Le,v| = w(e). Note that this is possible since k − 1 ≥ 2W.

Vertex gadget. For each v ∈ V (G), we add v, as well as a set Pv of k − 3
2Wv − 1 independent

vertices to H. We add all edges between v and Pv. Furthermore, for each edge e ∈ E(G) such that
v ∈ e, we connect v and the vertices in Le,v in H.

Edge gadget. For each e = uv ∈ E(G), we add the following gadget to H. First, it has two
vertices xe,u and xe,v, a set Ye of w(e) vertices, and a set Ze of k − 2w(e) − 3 vertices. The
vertex xe,u is adjacent to Ye ∪ Ze ∪ Le,u, and xe,v is adjacent to Ye ∪ Ze ∪ Le,v. We make u and v
adjacent to Ye. We furthermore add one new vertex qe to H as well as all edges between qe and
Ze ∪ Le,u ∪ Le,v ∪ {xe,u, xe,v}. We let X = {xe,u, xe,v | e = uv ∈ E(G)}, and Q = {qe | e ∈ E(G)}.

Adding all vertex and edge gadgets finishes the construction of H, which can be performed using
only logarithmic space.

Claim 14.1. If (G,w) has a circulating orientation, then H has a b-coloring with k colors.

Proof. Let
−→
G be the circulating orientation of (G,w). We give a coloring of the vertices of H with

colors [0..(k− 1)]. To do so, we identify some important subsets of [0..(k− 1)] whose b-vertices will
appear in targeted regions of H. First, we let V (G) = {v1, . . . , vn} and E(G) = {e1, . . . , em}. We
construct a proper coloring of H such that once the coloring is completed, the following hold.

(i) The vertex s⋆ (the center of the superstar) is a b-vertex of color 0.

(ii) For each i ∈ [n], vi is a b-vertex of color i.

(iii) For each i ∈ [m], qei is a b-vertex of color n+ i.

(iv) For each i ∈ [m], either xei,u or xei,v, where ei = uv, is a b-vertex of color m+ n+ i.

(v) Each of the remaining k− (2m+n+1) = 2W+1 colors has a b-vertex that is a center of an
anomymous star.
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· · ·

u

v1 v2

e1 e2

w(e1) = 3, w(e2) = 2

s?

Le1,v1 Le1,u Le2,u Le2,v2

v1 v2u

· · ·

L

Ye1
xe1,v1 xe1,u

Ze1

gadget for e2

Pv1 Pu Pv2

qe1

Figure 2: Sketch of the main part of the reduction. Bold edges mean that all edges between the corresponding
sets are present. All vertex sets represented by single boxes are independent. Note that |Le,v1 | = |Le,u| =
|Ye1 | = w(e1) = 3 and recall that |Ze1 | = k − 2w(e1)− 3.

Let S1, . . . , S2W+1 be the anonymous stars with centers s1, . . . , s2W+1, respectively. For each
i ∈ [2W+1], we assign si the color 2m+n+i, and the leaves of Si the colors [0..(k−1)]\{2m+n+i}.
This satisfies (v). We assign s⋆ the color 0 and its leaves the colors [k−1] in such a way that colors
[(2m+ n+ 1)..(2m+ n+ 2W)] appear on the vertices in L. This satisfies (i). For each i ∈ [n], we
assign vi color i. For each i ∈ [m] and each v ∈ ei, we let Cei,v be the colors appearing on Lei,v,
and we assign xei,v the color m+ n+ i.

We now color the edge gadgets. Let i ∈ [m] and ei = uv. We give qei color n + i. We assign
the vertices in Zei the colors

[0..(k − 1)] \ (Cei,u ∪ Cei,v ∪ {n+ i,m+ n+ i}).

If ei is directed from u to v in
−→
G , then we repeat colors Cei,u on Yei . Observe that this makes xei,v

a b-vertex for color m + n + i: it sees colors Cei,v on Lei,v, colors Cei,u on Yei , and the remaining
colors other than its own on Zei ∪ {qei}. Moreover, qei is a b-vertex for color n + i, since it sees
color m+ n+ i on xei,v, and the remaining colors on Lei,u ∪Lei,v ∪Zei . Once this is done for all i,
(iii) and (iv) are satisfied.

We now color the vertex gadgets. We first argue that each v ∈ V (G) already sees precisely
3
2Wv colors in its neighborhood. This is because v sees Wv colors on

⋃
e∈E(G),v∈e Le,v, and for each

edge e that is directed towards v, there are w(e) additional colors appearing in the neighborhood

of v; concretely, on the set Ye of the corresponding edge gadget. Since
−→
G is circulating, the latter

contribute with an additional 1
2Wv colors in total. Therefore, we can distribute the remaining

k− 3
2Wv − 1 colors on the set Pv, which makes v a b-vertex. This satisfies (ii), and we have arrived

at a b-coloring of H with k colors. ⌟

We now work towards the reverse implication of the correctness proof. We start with a claim
regarding the location of the b-vertices in any b-coloring of H with k colors. Throughout the
following, we denote by A the set of centers of the anonymous stars.

8



Claim 14.2. Each b-coloring of H with k colors has precisely one b-vertex per color. Moreover, the
b-vertices are {s⋆} ∪ V (G) ∪Q ∪A, and for each e = uv ∈ E(G), precisely one of xe,u and xe,v.

Proof. The only vertices with high enough degree (at least k − 1) to become b-vertices in such a
coloring of H are in {s⋆}∪V (G)∪Q∪A∪X. Note that this set has size 2W+3m+n+2 = k+m.

We argue that the gadget of each edge e = uv can contain at most two b-vertices. Note that
only three of its vertices, xe,u, xe,v, and qe have high enough degree to be b-vertices. Suppose for
a contradiction that xe,u and xe,v are b-vertices for colors cu and cv, respectively, where cu ̸= cv.
For xe,u to be a b-vertex of color cu, it needs to have a neighbor colored cv. By the structure of
H, this vertex has to be contained in Le,u. Similarly, we can conclude that Le,v contains a vertex
colored cu. But this means that qe has two neighbors colored cu and two neighbors colored cv.
Since degH(qe) = 2w(e) + |Ze| + 3 = k, this means that each of these vertices sees at most k − 2
colors in its neighborhood, so neither of them is a b-vertex, a contradiction.

Since we only have k+m vertices of high enough degree to be b-vertices, we can only have enough
b-vertices if each edge gadget has exactly three b-vertices, and if all vertices in {s⋆}∪V (G)∪A are
b-vertices. Now suppose that for some edge e = uv ∈ E(G), both xe,u and xe,v are b-vertices for
their color. By the structure of H, this implies that the same colors have to appear on Le,u and
Le,v. But s

⋆ needs to be a b-vertex, now there are w(e) ≥ 1 colors in its neighborhood that repeat.
Since degH(s⋆) = k − 1, this is not possible. This yields the claim. ⌟

Throughout the following, we assume that we have a b-coloring of H with k colors. Again, for
each e ∈ E(G) and v ∈ e, we denote by Ce,v the set of colors appearing on the vertices Le,v. We
prove another auxiliary claim.

Claim 14.3.

(i) For each e, e′ ∈ E(G) and v ∈ e, v′ ∈ e′, if (e, v) ̸= (e′, v′), then Ce,v ∩ Ce′,v′ = ∅.

(ii) For each e = uv ∈ E(G), either colors Ce,u or colors Ce,v appear on Ye; the former if xe,v is
a b-vertex and the latter if xe,u is a b-vertex.

Proof. (i). By Claim 14.2, we know s⋆ is a b-vertex. Since its degree is k− 1, all its neighbors must
receive distinct colors. Hence (i) follows.

(ii). By Claim 14.2, either xe,v or xe,u is a b-vertex for its color. Suppose that xe,v is a b-vertex
for color i (the other case is analogous). For xe,v to be a b-vertex, the colors Ce,u have to appear in
its neighborhood. We show that the colors Ce,u have to appear on Ye, which yields the claim. By
Claim 14.3(i), we have that Ce,u ∩ Ce,v = ∅, so the colors Ce,u have to appear on Ze ∪ Ye. We rule
out that they appear on Ze. For the following argument, recall that by Claim 14.2, qe is a b-vertex
for its color; moreover, its degree is k, so it sees exactly one color twice in its neighborhood.

We distinguish two cases based on the color of the vertex xe,u. Supposed xe,u received color i
as well. Then, qe sees color i twice, meaning that all remaining colors appear exactly once on its
neighborhood. Since Ze∪Le,u ⊂ N(qe)\{xe,u, xe,v}, no color from Ce,u appears on Ze. Now suppose
that xe,u received a color j ̸= i. Since xe,v is a b-vertex for color i, and since deg(xe,v) = k−1, there
is precisely one vertex with color j in N(xe,v). Since the given coloring of H is proper, this vertex
cannot be in Ye ∪ Ze ∪ {qe} ⊆ N(xe,u). Therefore, there is a vertex of color j in Le,v. This means
that qe sees color j twice, once on xe,u and once on a vertex in Le,v. Subsequently, the vertices in
Le,u ∪ Ze all receive unique colors, implying once again that no color from Ce,u appears on Ze. In
either case, the only way that xe,v sees colors Ce,u is if they appear on Ye, which proves the claim.⌟
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We now construct an orientation
−→
G of G. For each edge e = uv ∈ E(G), if xe,u is a b-vertex,

then we orient e towards u, and if xe,v is a b-vertex, we orient e towards v. Note that by Claim 14.2,

this is well-defined. Throughout the following whenever we write “uv” for an edge in
−→
G , we mean

that the edge uv is directed from u to v in
−→
G . The next claim completes the correctness proof of

the reduction.

Claim 14.4. For each v ∈ V (G),
∑

uv∈E(
−→
G)

w(uv) = 1
2Wv.

Proof. We first show that
∑

uv∈E(
−→
G)

w(uv) ≥ 1
2Wv. By Claim 14.2, v is a b-vertex. Moreover,

degH(v) = k + 1
2Wv − 1 since v has k − 3

2Wv − 1 neighbors in Pv, Wv additional neighbors in the
edge gadgets, Wv additional neighbours in L, and no other neighbors. This means that for v to be
a b-vertex, v needs to see at least 1

2Wv colors in
⋃

e∈E(G),v∈e Ye. Claim 14.3 then implies that there

is a set of edges {e1, . . . , ed} incident with v and with
∑

i∈[d]w(ei) ≥ 1
2Wv such that for all i ∈ [d],

xei,v is a b-vertex. This implies the inequality by our construction of
−→
G .

Now we show that
∑

uv∈E(
−→
G)

w(uv) ≤ 1
2Wv. Let Y =

⋃
e∈E(G) Ye, note that |Y| = W, and

that to make each v ∈ V (G) a b-vertex, 1
2Wv colors must appear in NH(v) ∩ Y that are not in

NH(v) \ Y. Moreover, for each e = uv ∈ E(G), Ye has colors that appear in NH(u) \ Y but not in
NH(v)\Y or vice versa by Claim 14.3. Since W =

∑
e∈E(G)w(e) =

∑
v∈V (G)

1
2Wv, we can conclude

that if for some v ∈ V (G),
∑

uv∈E(
−→
G)

w(uv) > 1
2Wv, then there is another v′ ∈ V (G) \ {v} with∑

uv′∈E(
−→
G)

w(uv′) < 1
2Wv′ , contradicting the previous paragraph. ⌟

Claim 14.5. Given a path decomposition of G of width w, one can construct a path decomposition
of H of width at most w + 5 in polynomial time and logarithmic space.

Proof. Let B be a path decomposition of G of width w. We add s⋆ to all bags of B. For each vertex
v ∈ V (G), let Bv ∈ B be a bag containing v. We insert a sequence of |Pv| bags after Bv containing
Bv, and a unique vertex of Pv. For each edge e = uv ∈ E(G), let Be be a bag in B containing u
and v. We insert a sequence of |Ye∪Ze∪Le,u∪Le,v| bags after Be containing Be, xe,u, xe,v, qe, and
a unique vertex of Le,u ∪ Le,v ∪ Ye ∪ Ze. Finally, we append a sequence of bags forming a width-1
path decomposition of the anonymous stars. Note that this gives a path decomposition of H and
there is no bag to which we added more than six vertices. It is easy to see that these operations
can be performed within the claimed time and space requirements. ⌟

Adapting the XP-algorithm for b-Coloring parameterized by module-width w [22] to a nonde-
terministic FPT-time and f(w) log n space algorithm, we can show that b-Coloring parameterized
by linear module-width, and therefore by pathwidth, belongs to XNLP. This can be done similarly
as in the case of Graph Coloring parameterized by linear clique-width as shown in [5]. This is
summarized in the statement below.

Claim 14.6. b-Coloring parameterized by the module-width of a given linear order of the vertices
of the input graph is in XNLP.

Membership then follows from Lemma 11 and Claim 14.6. This concludes the proof of the theo-
rem. □
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4 Neighborhood Diversity

In this section, we consider the parameterization by neighborhood diversity. We follow the same
strategy as the one that Koutecký [24] applied for the Graph Coloring problem, that is, we give
an ILP-formulation that can be solved efficiently by a parameterized ILP-algorithm due to Jansen
and Rohwedder [23].1

Theorem 15 (Jansen and Rohwedder [23]). For A ∈ Zr×n, b ∈ Zr, c ∈ Zn, the ILP2

min{cTx : Ax = b, x ∈ Zn
≥0}

can be solved in time O((
√
r∆)2r) · log ∥b∥∞ + O(rn), where ∆ = ∥A∥∞ = maxi,j A(i, j) and

∥b∥∞ = maxi b(i).

Note that in the previous theorem, the number of rows r in the ILP is equal to the number of
constraints. Recall that an optimal ND-partition can be computed in polynomial time (Remark 6).

Theorem 16. b-Coloring parameterized by the neighborhood diversity d of the input n-vertex
graph is fixed-parameter tractable. Given an ND-partition of the input graph, the algorithm runs
in time 2O(d log d) log n+O(n).

Proof. Suppose we want to find a b-coloring with k colors. Let G be a graph of neighborhood
diversity at most d with ND-partition P = (P1, . . . , Pd). We create another partition P ′ of V (G)
as follows. For each Pi that is an independent set of size at least two, we pick one vertex vi, let
P ′
i = Pi \ {vi}, remove Pi from P and add P ′

i and {vi} to P ′. All other parts of P are added to P ′

as they are. As a convention, we consider each {vi} a clique of size 1, and each such part in P ′ a
clique part. Note that d′ = |P ′| ≤ 2d.

We start with a few observations.

(i) If u, v ∈ V (G) are false twins, then in each proper coloring of G, either both u and v are
b-vertices for the same color, or neither of them is a b-vertex.

(ii) For each P ∈ P ′ that is a clique, either all vertices in P are b-vertices for their color, or none
of them are.

(iii) In each b-coloring of G, each color class has a b-vertex contained in a clique part of P ′.

(i) is immediate, (ii) follows from the fact that all vertices that are in the same part are twins,
and (iii) follows from (i) and our construction: if there was an independent part with more than
one vertex in P, we split off a single vertex into a new part, which is now considered a clique part.
If in a b-coloring, some independent part (of the original ND-partition P) had a b-vertex, then the
split off vertex is a b-vertex for the same color by (i), considered a clique part in P ′.

Next, we guess which clique parts of P ′ = (P1, . . . P
′
d′) contain b-vertices in the solution we are

looking for. From now on, fix one such choice B ⊆ [d′].
We construct an ILP as follows. Let H = G/P ′. Each color class is described by its type, that

is, the parts of P ′ it intersects. Note that each type is an independent set in H. Therefore, for
each independent set I in H, we add a variable xI , which counts how many color classes of that
type there are. From now on, we denote by I(H) the independent sets of H. Now, the sum, over

1Note that the arXiv-version contains an improved running time over the version published in the ITCS 2019
proceedings.

2For a vector c, cT denotes its transpose.
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all independent sets I of H of the xI will correspond to the total number of colors used. We add
a constraint that ensures that this number is k. Moreover, for each clique part P ′

i , we have to
make sure that exactly |P ′

i | colors appear on that part, and in each independent part P ′
i′ , at least

one color must appear. Finally, we have to ensure that there are k b-vertices. Note that, since all
b-vertices are clique parts, by Observation (ii), each vertex in each part P ′

i for i ∈ B, has to be a
b-vertex. Therefore, for each i ∈ B, we ensure that the number of colors intersecting the closed
neighborhood of vertex i in H is equal to k. To ensure that each color class has a b-vertex, we use
the objective function to minimize the number of color classes that do not intersect B. If this value
is 0, then we have a b-coloring, otherwise not. The ILP is:

min
∑

I∈I(H),I∩B=∅
xI

s.t.
∑

I∈I(H)
xI = k∑

I∈I(H),i∈I
xI = |P ′

i |, if P ′
i is a clique∑

I∈I(H),i∈I
xI ≥ 1, if P ′

i is an independent set (2)∑
I∈I(H),I∩NH [i]̸=∅

xI = k, if i ∈ B

The correctness of this formulation follows fairly straightforwardly from the discussion above.

Observation 16.1. The previous ILP has a solution with value 0 if and only if G has a b-coloring
with k colors whose b-vertices intersect precisely the parts {P ′

i | i ∈ B}.

For each guess of B, we construct an ILP as above. If there is one guess for which we have
a solution with value 0, we report that G has a b-coloring with k colors, and say No otherwise.
Correctness directly follows from Observation 16.1.

Let us analyze the run time. We can obtain the ND-partition P ′ from P in time O(n). We
can then compress P ′ to remember only |P ′

i | for each i ∈ [d′] and one representative vertex per
P ′
i , also in time O(n). We solve 2O(d) many ILPs using Theorem 15 with O(d) rows and 2O(d)

variables. From the compressed representation, each such ILP can be constructed in 2O(d) log n
time. Note that the inequalities (2) can be turned into equalities by adding at most 2O(d) slack
variables. In the resulting ILP, the largest coefficient of any variable is 1, and the largest value on
the right-hand side is at most n, since we may assume that k ≤ n, and clearly, for each i ∈ [d′],
|P ′

i | ≤ n. Therefore, we have ∆ = 1 and ∥b∥∞ ≤ n, and each of the ILPs can be solved in time

2O(d log d) log n+ d · 2O(d) = 2O(d log d) log n,

yielding the claimed run time bound. □

5 Twin Cover

In this section, we prove the following theorem. This will be done by reducing the input graph of
bounded twin cover number to a graph of bounded neighborhood diversity and then applying the
algorithm from Theorem 16.

Theorem 17. b-Coloring parameterized by the twin cover number of the input graph is fixed-
parameter tractable. Given a graph with n vertices, m edges, and twin cover number t, it is solvable
in 22

O(t)
n+O(m) time.

12



Let (G, k) be an instance of b-Coloring. If the size of a minimum twin-cover of G is at most t,
then one can compute a twin-cover S of G of size at most t in O(1.2378t+ tn+m) time [16]. Recall
that each connected component of G−S consists of a clique C consisting of twins (Observation 8).
Since C is a clique, we may assume |C| ≤ k.

Without loss of generality, let the color set be {1, . . . , k} and assume the vertices of S get colors
from the set {1, . . . ,min{k, t}}. For each col : S → {1, . . . ,min{k, t}} such that col is a proper
coloring of G[S], perform the following steps. Note, in the following, col is fixed.

For each A ⊂ S, let CA = {C : C is a maximal clique of G − S and N(C) = A}. Throughout,
we use the shorthand

⋃
CA for

⋃
C∈CA C. Let ccolA denote the number of distinct colors used by

the vertices of A in col, that is ccolA = | ∪a∈A col(a)|. Note that if a b-coloring with k colors of G
coincides with col on the vertex set S, then for any C ∈ CA, k ≥ |C|+ ccolA . Thus, if this inequality
does not hold, then col cannot be extended into a k-b-coloring of G. In this case, discard col and
consider the next available (non-discarded) proper coloring function on S. Henceforth, assume that
for each C ∈ CA, |C| ≤ k − ccolA .

Observation 18. Let C be a maximal clique of G−S. A vertex v ∈ C is a b-vertex of some b-coloring
of G with k colors that extends col, if and only if |C| = k − ccolA .

Proof. If |C| = k − ccolA , then in any proper coloring of G with k colors that extends col, and for
any color i ∈ {1, . . . , k}, there exists a vertex of N [C] that gets color i. Since N(v) = N [C] \ {v},
v is a b-vertex.

In the other direction, assume |C| ≤ k− ccolA −1. Then for any v ∈ C, since N(v) = N [C]\{v},
in any proper coloring of G that extends col, the neighbours of v get colors from a color set of
size strictly less than |C \ {v}| + ccolA , which is strictly less than k − 1. Therefore, v cannot be a
b-vertex. ⌟

For each A ⊆ S, let Cmax
A ∈ CA denote a clique of maximum cardinality among the cliques in CA.

Note that for any v ∈
⋃
CA \ Cmax

A , by Observation 18, if (G, k) is a Yes-instance of b-Coloring
witnessed by a coloring that extends col, then there exists a k-b-coloring that extends col where,
if v is a b-vertex, then it is not the unique b-vertex of its color, as Cmax

A would also contain one such
vertex. This is the idea behind the next reduction rule, which deletes vertices until the number of
vertices in all the cliques of CA is bounded.

Reduction Rule 19. If there exists A ⊆ S such that |
⋃

CA| ≥ k−ccolA +1, then let v ∈
⋃
CA\Cmax

A

and delete v from the graph.

Lemma 20. Reduction Rule 19 is safe, i.e., under its preconditions, G has a b-coloring with k
colors if and only if G \ v has a b-coloring with k colors.

Proof. In both directions, let C ∈ CA denote the clique containing v. Consider the backward
direction first. That is, assume G \ v has a b-coloring col† with k colors that extends col. Recall
that |C| ≤ k− ccolA . Since N(v) = N [C]\{v}, the number of distinct colors that appear on N(v) in
col† is at most |C \{v}|+ccolA ≤ k−ccolA −1+ccolA ≤ k−1. Then, there exists a color i ∈ {1, . . . , k}
that does not appear on N(v) in col†. Thus extending col† by coloring v with the color i yields a
b-coloring of G.

Now consider the forward direction. Let col† be a b-coloring of G with k colors that extends
col, such that if v is a b-vertex, then v is not the unique b-vertex of its color. We argue that such
a coloring exists. Indeed, by Observation 18, if v belongs to a clique of size strictly smaller than
k− ccolA , then v is not a b-vertex. In the other case, v /∈ Cmax

A , which means that C and Cmax
A must
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have the same size. Since v is a b-vertex, say of color i, all colors appear on N [v] = C ∪ A, and
therefore all colors appear on Cmax

A ∪A, with the colors on C repeating on Cmax
A . This implies that

there is a b-vertex of color i in Cmax
A as well.

Now we show that after deleting v we still have a b-coloring of G \ v. Suppose col†(v) = i. If v
is a b-vertex of its color, then by assumption there is another b-vertex of color i. Now suppose that
v was used to make another vertex u of color j a b-vertex. Suppose further that v is the unique
neighbour of u among all vertices that are colored i by col†. Suppose u ∈ C. This implies that
|C| = |Cmax

A | and by the same argument as above, color j has a b-vertex in Cmax
A as well. If u /∈ C,

then u ∈ S. Since |
⋃

CA| ≥ k − ccolA + 1 and col† is a coloring with k colors, by the pigeonhole
principle, there exist v′, v′′ ∈

⋃
CA that have the same color. Let col†(v′) = col†(v′′) = j′. Since v′

and v′′ have the same color, we may assume v′ /∈ Cmax
A . Construct col′† : V (G) \ {v} → {1, . . . , k}

such that col′†(x) = col†(x) for all x ̸= v′, and col′†(v′) = i. We now observe that col′† is a
proper coloring of G \ {v}, since v was the unique vertex in

⋃
CA colored i. Moreover, every color

still has a b-vertex. ⌟

Consider the instance obtained after the exhaustive application of Reduction Rule 19. For
brevity of notation let the instance be (G, k, S, col) where S is a twin cover of G of size at most t
and col is a proper coloring of G[S] with colors from {1, . . . ,min{k, t}}. Further, for each A ⊆ S,
the number of vertices present in the union of the cliques in CA is at most k − ccolA and therefore
CA contains at most one clique of size k − ccolA . We call such an instance a cleaned instance.

Lemma 21. If a cleaned instance (G, k, S, col) is a Yes-instance, then there exists a k-b-coloring
where for each A ⊆ S, the vertices of

⋃
CA get distinct colors.

Proof. Let col† be a solution of the instance (G, k, S, col). For each A ⊆ S proceed as follows.
Recall that |

⋃
CA| ≤ k − ccolA . Also the neighbors of

⋃
CA in G (which is the set A) intersect ccolA

many color classes of col†. Let this color set be IA ⊆ {1, . . . , k}. Consider the clique Cmax
A ∈ CA.

Let the color set of Cmax
A in col† be I1. Then IA ∩ I1 = ∅. Consider the vertices in

⋃
CA \ Cmax

A .
Note that, in this case, the vertices of

⋃
CA \Cmax

A are not b-vertices. Indeed, in a cleaned instance,
either a b-vertex belongs to Cmax

A , in which case
⋃
CA \ Cmax

A = ∅, or a b-vertex belongs to S.
Thus, if there exists two vertices v, v′ ∈

⋃
CA \Cmax

A , such that col†(v) = col†(v′), then arbitrarily
assign a color to v′ that is not assigned to any of its neighbours. Repeat this, until all vertices of⋃
CA \ Cmax

A get distinct colors (and their colors are disjoint from IA ∪ I1). It is easy to see that
the resulting coloring is also a b-coloring of G that respects col. ⌟

The safeness of the following reduction rule follows from Lemma 21.

Reduction Rule 22. For each A ⊆ S, delete the cliques in CA \ {Cmax
A } and add a new clique of

size |
⋃
CA \ Cmax

A | whose neighbourhood in G is exactly A.

Lemma 23. When Reduction Rules 19 and 22 are no longer applicable, the neighbourhood diversity
of G is at most 2t+1 + t.

Proof. Since Reduction Rule 19 is no longer applicable, we can assume that the given instance is
a clean instance. From Reduction Rule 22, for each A ⊆ S, the number of cliques of G − S is at
most two. Therefore the total number of cliques of G−S is at most 2t+1. Thus the neighbourhood
diversity of G is at most 2t+1 + t, where the ND-partition is composed of the cliques in G− S plus
t = |S| many sets of size one, each containing a vertex of S. ⌟
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Proof (of Theorem 17). The algorithm starts by finding a twin-cover of G of size t in O(1.2378t +
tn+m) time [16]. The algorithm guesses the restriction of the k-b-coloring of G onto the vertices
of S. Assuming that the colors of S are from the set {1, . . . ,min{k, t}} in the k-b-coloring, the
number of guesses is at most t! = 2O(t log t). Applying Reduction Rule 19 on this instance, we get
a cleaned instance. Then applying Reduction Rule 22 on this instance, by Lemma 23 we conclude
that the neighbourhood diversity of G is at most 2t+1+ t. Applying all reduction rules can be done
in time O(2t · n). Using the algorithm of Theorem 16, we solve the problem in 22

O(t) · log n+O(n)
time. If for neither of the guessed colorings of S, the above algorithm reports Yes, then report a
No. Otherwise, report Yes. □

6 Conclusion

We explored the landscape of structural parameterizations of b-Coloring. We showed that the
problem is XNLP-complete parameterized by pathwidth, which implies it is W[t]-hard for any t by
pathwidth, and as a consequence, by treewidth and clique-width as well. Recall that b-Coloring
was already known to be XP parameterized by clique-width. The algorithm of [22] runs in time

n2O(w)
, where w is the clique-width of the input graph (which is tight under the Exponential Time

Hypothesis). Since graphs of treewidth t have clique-width 2Θ(t) [12], this results in an XP algorithm

for b-Coloring parameterized by treewidth with running time n22
O(t)

. It would be interesting to
investigate if this dependence on the treewidth can be improved, and accompanied by a matching
lower bound under the ETH.

On the positive side, we showed b-Coloring to be FPT parameterized by neighborhood diver-
sity and twin cover, two generalizations of vertex cover to more dense graphs. A parameter that
generalizes both neighborhood diversity and twin cover is modular-width, defined by Gajarský,
Lampis and Ordyniak [15]. The complexity of b-Coloring parameterized by modular-width re-
mains an interesting open problem.
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