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Abstract

When modeling an application of practical relevance as an instance of a combinatorial prob-
lem X, we are often interested not merely in finding one optimal solution for that instance,
but in finding a sufficiently diverse collection of good solutions. In this work we initiate a sys-
tematic study of diversity from the point of view of fixed-parameter tractability theory. First,
we consider an intuitive notion of diversity of a collection of solutions which suits a large vari-
ety of combinatorial problems of practical interest. We then present an algorithmic framework
which –automatically– converts a tree-decomposition-based dynamic programming algorithm for
a given combinatorial problem X into a dynamic programming algorithm for the diverse version
of X. Surprisingly, our algorithm has a polynomial dependence on the diversity parameter.

1 Introduction

In a typical combinatorial optimization problem, we are given a large space of potential solutions
and an objective function. The task is to find a solution that maximizes or minimizes the objective
function. In many situations of practical relevance, however, it does not really help to get just
one optimal solution; it would be much better to have a small, but sufficiently diverse collection of
sufficiently good solutions. Given such a small list of good solutions, we can select one which is best
for our purpose, perhaps by taking into account external factors—such as aesthetical, political, or
environmental—which are difficult or even impossible to formalize. An early, illustrative example
is the problem of generating floor plans for evaluation by an architect [19].

Solution diversity is already a fundamental concept in many computational tasks. Take, for
instance, a web search. Here, we do not want to find the one website that ‘optimally fits’ the search

∗An extended abstract of this manuscript has appeared in the Proceedings of the Twenty-Ninth International
Joint Conference on Artificial Intelligence, IJCAI 2020 [4].
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term, neither a ranking of a small number of ‘best fits’, but what is desirable is a diverse set of
websites that fit the search term reasonably well.

Another advantage of considering a set of diverse solutions is that some of these solutions may
find some use in contexts which are not specified à priori. For instance, in cutting problems [24],
which are widely studied in the field of operations research, we are given a piece of material of
standard size and a prescribed set of shapes. The goal is to cut the material into pieces of the
specified shapes in such a way that the amount of leftover material is minimized. In this setting,
a minimum-size leftover may be viewed as a solution. A set of sufficiently diverse solutions would
give the user the opportunity to choose a suitable leftover that could be used later in the fabrication
of pieces whose shapes have not been specified in the input of the program.

The notion of diversity has also been applied to solution sets of various types of combinatorial
problems. For instance, the works [20] and [25, 26] seek to find solution sets to mixed-integer
programming problems and constraint satisfaction problems, respectively, that are diverse. In
other words, the solutions are far apart from each other in some mathematical notion of distance.
We refer to [32] for a timely overview of the subject.

From a complexity-theoretic perspective, there are two immediate barriers to this approach.
The first is that most combinatorial problems are already NP-hard when asking only for a single
solution. The second is that the very basic Maximum Diversity problem, which given a set of
n elements in a metric space and an integer k < n, asks for a size-k subset of the elements such
that the sum of the pairwise distances is maximized, is NP-hard as well [28]. The theory of fixed-
parameter tractability [14] provides a powerful framework to overcome these barriers. The key goal
is to identify a secondary numerical measure of the inputs to an (NP-hard) computational problem,
called the parameter, and to provide algorithms in whose runtime the combinatorial explosion is
restricted to the parameter k. More formally, a problem is fixed-parameter tractable (FPT), if it
can be solved in time f(k) · nc, where f is a computable function, n the input size, and c a fixed
constant. On instances where the parameter value is relatively small, FPT-algorithms are efficient.
In an application context, we are naturally concerned with finding small diverse sets of solutions
since the aim is to provide the user with a few alternatives that can then be compared manually.
Therefore, the number of requested solutions is an ideal candidate for parameterization.

In this work, we propose to study the notion of solution diversity from the perspective of
fixed-parameter tractability theory. We demonstrate the theoretical feasibility of this paradigm by
showing that diverse variants of a large class of parameterized problems admits FPT-algorithms.
Specifically, we consider vertex-problems on graphs, which are sets of pairs (G,S) of a graph G
and a subset S of its vertices that satisfies some property. For instance, in the Vertex Cover
problem, we require the set S to be a vertex cover of G (i.e., S has to contain at least one endpoint
of each edge of G). One consequence of our main result which we discuss below in more detail is
that the diverse variant of Vertex Cover, asking for r solutions, is FPT when parameterized by
solution size plus r.

Before we proceed, we would like to point out promising future applications of the Diverse
FPT paradigm in AI. The Vertex Cover problem itself naturally models conflict-resolution: the
entities are the vertices of the graph, and a conflict is represented by an edge. Now, a vertex cover
of the resulting graph is a set of entities whose removal makes the model conflict-free. An example
of a potential use of Diverse Vertex Cover in a planning scenario is given in [5]. In general,
in planning and scheduling problems, a large amount of side information is lost or intentionally
omitted in the modeling process. Some side information could make the model too complex to be
solved, and other information may even be impossible to model. Offering the user a small number
of good solutions to a more easily computable ‘base model’, among which they can handpick their
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favorite solution is a feasible alternative.

A Formal Notion of Diversity We choose a very natural and general measure as our notion of
diversity among solutions. Given two subsets S and S′ of a set V the Hamming distance between
S and S′ is the number

HamDist(S, S′) = |S\S′|+ |S′\S|.
We define the diversity of a list S1, . . . , Sr of subsets of V to be

Div(S1, . . . , Sr) =
∑

1≤i<j≤r
HamDist(Si, Sj).

We can now define the diverse version of vertex-problems:

Definition 1.1 (Diverse Problem). Let P1, . . . ,Pr be vertex-problems, and let d ∈ N. We let

Divd(P1, . . . ,Pr) = {(G,X1, . . . , Xr) | (G,Xi) ∈ Pi,
Div(X1, . . . , Xr) ≥ d}.

Intuitively, given vertex-problems P1, . . . ,Pr and a graph G, we want to find subsets S1, . . . , Sr of
vertices of G such that for each i ∈ {1, . . . , r}, Si is a solution for problem Pi on input G, and
such that the list S1, . . . , Sr has diversity at least d. If all vertex-problems P1, . . . ,Pr are the same
problem P, then we write Divdr(P) as a shortcut to Divd(P1, . . . ,Pr).

Diversity and Dynamic Programming The treewidth of a graph is a structural parameter
that quantifies how close the graph is to being a forest (i.e., a graph without cycles). The popularity
of this parameter stems from the fact that many problems that are NP-complete on general graphs
can be solved in polynomial time on graphs of constant treewidth. In particular, a celebrated
theorem due to Courcelle [11] states that any problem expressible in the monadic second-order
logic of graphs can be solved in polynomial time on graphs of constant treewidth. Besides this
metatheorem, the notion of treewidth has found applications in several branches of Artificial In-
telligence such as Answer Set Programs [6], checking the consistency of certain relational algebras
in Qualitative Spacial Reasoning [7], compiling Bayesian networks [10], determining the winners
of multi-winner voting systems [36], analyzing the dynamics of stochastic social networks [3], and
solving constraint satisfaction problems [27]. A large number of these algorithms are in fact FPT-
algorithms when treewidth is the parameter. Typically, such algorithms are dynamic programming
algorithms which operate on a tree-decomposition in a bottom-up fashion by computing data from
the leaves to the root.

Dynamic Programming Core Model We introduce a formalism for dynamic programming
based on a tree decomposition, which we call the Dynamic Programming Core model. This no-
tion captures a large variety of dynamic programming algorithms on tree decompositions. We
use the model to derive our main result (Theorem 4.5) which is a framework to efficiently—and
automatically—transform treewidth-based dynamic programming algorithms for vertex-problems
into algorithms for the diverse versions of these problems. More precisely, we show that if P1, . . . ,Pr
are vertex-problems where, for each i ∈ {1, . . . , r}, Pi can be solved in time fi(t) · nO(1), then
Divd(P1, . . . ,Pr) can be solved in time (

∏r
i=1 fi(t)) ·nO(1). In particular, if a vertex-problem P can

be solved in time f(t) · nO(1), then its diverse version Divdr(P) can be solved in time f(t)r · nO(1).
The surprising aspect of this result is that the running time depends only polynomially on d
(which is at most r2n), while a näıve dynamic programming algorithm would have a runtime of
dO(r

2) · f(t)r · nO(1).
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Discussion of the Diversity Measure Various measures of diversity have been used, studied,
and compared in different areas of computer science. We choose the sum of the Hamming distances
over all pairs of elements for this work. This measure is commonly used for population diversity in
genetic algorithms [18, 35]. Nonetheless, we would like to point out that it has some weaknesses.
For instance, taking many copies of two disjoint solutions yields a relatively high diversity value,
and such a solution set is not ‘diverse’ from an intuitive point of view. We refer to [5] for a
more detailed discussion. Another natural measure using the Hamming distance is the minimum
Hamming distance over all pairs in a set, as it is done e.g. in [25, 26]. We would like to point out
that a straightforward adaptation of our algorithmic framework would result in a running time of
dO(r

2) · f(t)r · nO(1), where d is the diversity, r the number of solutions, and t the treewidth. This
remains FPT only when the diversity d is an additional component of the parameter, or when d
is naturally upper bounded by t and r. Consider for instance Diverse Vertex Cover, asking
for vertex covers of size at most k. In any nontrivial instance, t is at most k, and the Hamming
distance between two solutions is at most 2k, therefore we may assume that d ≤ 2k. This implies
that Diverse Vertex Cover can be solved in time 2O(r

2 log k)+kr · nO(1) using the minimum
Hamming distance as a diversity measure.

Related Work The above-mentioned Maximum Diversity problem has applications in the
generation of diverse query results, see e.g. [21, 1]. Besides mixed integer programming [20, 13, 31],
binary integer linear programming [22, 34] and constraint programming [25, 26], diverse solution
sets have been considered in SAT solving [30], recommender systems [2], routing problems [33],
answer set programming [15], and decision support systems [29, 23].

2 Preliminaries

For positive integers a and b, with a < b, we use [a, b] to denote the set {a, a + 1, . . . , b}. We
use V (G) and E(G), respectively, to denote the vertex and edge sets of a graph G. For a tree
T rooted at q we use Tt to denote the subtree of T rooted at a vertex t ∈ V (T ). A rooted tree
decomposition of a graph G is a tuple D = (T, q,X ), where T is a tree rooted at q ∈ V (T ) and
X = {Xt | t ∈ V (T )} is a collection of subsets of V (G) such that:

•
⋃
t∈V (T )Xt = V (G),

• for every edge {u, v} ∈ E(G), there is a t ∈ V (T ) such that {u, v} ⊆ Xt, and

• for each {x, y, z} ⊆ V (T ) such that z lies on the unique path between x and y in T , Xx∩Xy ⊆
Xz.

We say that the vertices of T are the nodes of D and that the sets in X are the bags of D. Given
a node t ∈ V (T ), we denote by Gt the subgraph of G induced by the set of vertices

⋃
s∈V (Tt)

Xs.
The width of a tree decomposition D = (T, q,X ) is defined as maxt∈V (T ) |Xt| − 1. The treewidth
of a graph G, denoted by tw(G), is the smallest integer w such that there exists a rooted tree
decomposition of G of width at most w. The rooted path decomposition of a graph is a rooted tree
decomposition D = (T, q,X ) such that T is a path and q is a vertex of degree 1. The pathwidth
of a graph G, denoted by pw(G), is the smallest integer w such that there exists a rooted path
decomposition of G of width at most w. Note that in a rooted path decomposition, every node has
at most one child.

For convenience we will always assume that the bag associated to the root of a rooted tree
decomposition is empty. For a node t ∈ V (T ) we use δD(t), or δ(t) when D is clear from the
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context, to denote the number of children of t in the tree T . For nodes t and t′ of V (T ) where t′ is
the parent of t we use forg(t) = Xt \Xt′ to denote the set of vertices of G which are forgotten at
t. By convention, for the root q of T , we let forg(q) = ∅. For t ∈ V (T ) we denote by new(t) the

set Xt \
⋃δ(t)
i=1Xti where t1, . . . , tδ(t) are the children of t. Given a rooted tree decomposition D of

a graph G one can obtain, in linear time, a tree decomposition (T, q,X ) of G of the same width as
D such that for each t ∈ V (T ), δ(t) ≤ 2 and |new(t)| ≤ 1 [12]. From now on we assume that every
rooted tree decomposition is of this kind.

3 A First Example: Diverse Vertex Cover

The main result of this paper is a general framework to automatically translate tree-decomposition-
based dynamic programming algorithms for vertex-problems into algorithms for the diverse versions
of these problems. We develop this framework in Section 4. In this section we illustrate the main
techniques used in this conversion process by showing how to translate a tree-decomposition-based
dynamic programming algorithm for the Vertex Cover problem into an algorithm for its diverse
version Diverse Vertex Cover. Given a graph G and three integers k, r, and d, the Diverse
Vertex Cover problem asks whether one can find r vertex covers in G, each of size at most k,
such that their diversity is at least d. Our algorithm for this problem will run in 2O(kr)|V (G)| time.

3.1 Incremental Computation of Diversity

Recall that we defined the diversity of a list S1, S2, . . . , Sr of subsets of a set V to be

Div(S1, . . . , Sr) =
∑

1≤i<j≤r
HamDist(Si, Sj).

We will now describe a way to compute the diversity Div(S1, . . . , Sr) in an incremental fashion, by
incorporating the influence of each element of V in turn. For each element v ∈ V and each pair
of subsets S, S′ of V , we define γ(S, S′, v) to be 1 if v ∈ (S \ S′) ∪ (S′ \ S), and to be 0 otherwise.
Intuitively, γ(S, S′, v) is 1 if and only if the element v contributes to the Hamming distance between
S and S′. Given this definition we can rewrite HamDist(S, S′) as

HamDist(S, S′) =
∑
v∈V

γ(S, S′, v),

and the diversity of a list S1, . . . , Sr of subsets of V as

Div(S1, . . . , Sr) =
∑

1≤i<j≤r
∑

v∈V γ(Si, Sj , v)

=
∑

v∈V |{` : v ∈ S`}| · |{` : v /∈ S`}|.

Now, if we define the influence of v on the list S1, . . . , Sr as

I(S1, . . . , Sr, v) = |{` : v ∈ S`}| · |{` : v 6∈ S`}|,

then we have that

Div(S1, . . . , Sr) =
∑
v∈V

I(S1, . . . , Sr, v). (1)
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3.2 From Vertex Cover to Diverse Vertex Cover

We solve Diverse Vertex Cover using dynamic programming over a tree decomposition of the
input graph. An excellent exposition of tree-width-based dynamic programming algorithms can
be found in [12, Chapter 7]. We sketch here how finding a single solution of the Vertex Cover
problem can be easily achieved given a tree-decomposition of width w. We store all possible inter-
sections of potential solutions with a particular node of the tree-decomposition while remembering
the (smallest) size of each such partial solution on the whole subtree of the node. This information
can be computed starting with the leaves of the tree-decomposition up to the root using dynamic
programming. We refer to the information stored in each node of the decomposition as table and
its size is the number of entries in the table which corresponds to the number of potential solu-
tions. Then the resulting solution—the vertex cover of the smallest size—is the smallest solution
among those stored in the root. For each node, the size of the table is at most 2w, which is, in
other words, at most 2w possible solution intersections with the node. Then, the update step of
the dynamic programming takes linear time. Observe that the table size does not depend upon
the size of the vertex cover in the subtree of the node for the above approach, but it is sufficient
to have a decomposition of bounded width. The existence of such a small width decomposition is
implied by the existence of vertex cover of small size, but not vice-versa. As this section serves as
an illustration of our approach, we will limit ourselves to vertex covers of size at most k for k being
a parameter. However, such a limitation is not needed for the main theorem, where we rely only
on the width of the decomposition.

Now, we modify the dynamic programming approach to compute r vertex covers each of size
k that are as diverse as possible under the Hamming distance measure. Let us remark here that
one can always compute all possible solutions, in this case, all possible vertex covers, but such an
approach could be quite costly. Instead, we will store only several r-tuples composed of possible
intersections of solutions with the particular node. As r becomes an additional parameter for our
diversity paradigm, this translates to an FPT algorithm with only polynomial dependency on the
target diversity d.

Let (G, k, r, d) be an instance of Diverse Vertex Cover and let D = (T, q,X ) be a rooted
tree decomposition of G. For each node t ∈ V (T ), we define the set

It = {((S1, s1), . . . , (Sr, sr), `) | ` ∈ [0, d] ,∀i ∈ [1, r] , Si ⊆ Xt, si ∈ [0, k]}.

This set It, t ∈ V (T ), is such that the partial solutions we will construct for the node t will
always be a subset of It. Note that for each t ∈ V (T ), |It| ≤ (2|Xt| · (k + 1))r · (d + 1). Now, our
dynamic programming algorithm for Diverse Vertex Cover consists in constructing for each
t ∈ V (T ) a subset Rt ⊆ It as follows. Let t be a node in V (T ) with children t1, . . . , tδ(t). We recall
that, by convention, this set of children is of size 0, 1, or 2. We let Rt be the set of all tuples
((S1, s1), . . . , (Sr, sr), `) ∈ It satisfying the following additional properties:

1. For each j ∈ [1, r], E(G[Xt \ Sj ]) = ∅.

2. For each i ∈ [1, δ(t)] there exists a tuple ((Si1, s
i
1), . . . , (S

i
r, s

i
r), `i) in Rti such that

(a) Sj ∩Xti = Sij ∩Xt for each i ∈ [1, δ(t)] and each j ∈ [1, r],

(b) For each j ∈ [1, r], sj = |forg(t) ∩ Sj |+
∑δ(t)

i=1 s
i
j ,

(c) and ` = min(d,m) where m =
∑

v∈forg(t) I(S1, . . . , Sr, v) +
∑δ(t)

i=1 `i.

Lemma 3.1. (G, k, r, d) is a Yes-instance of Diverse Vertex Cover if and only if there is a
tuple ((S1, s1), . . . , (Sr, sr), `) in Rq such that ` = d.
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Proof. Using induction, one can see that for each t ∈ V (T ), Rt is the set of every element of It
such that, with Yt = Xt \ forg(t), there exists (Ŝ1, . . . , Ŝr) ∈ V (Gt)

r, that satisfies:

• for each i ∈ [1, r], Ŝi is a vertex cover of Gt,

• for each i ∈ [1, r], Ŝi ∩Xt = Si,

• for each i ∈ [1, r], |Ŝi \ Yt| = si, and

• min(d,Div(Ŝ1 \ Yt, . . . , Ŝr \ Yt)) = `.

As the root q of the tree decomposition D is such that Xq = ∅, we obtain that the elements in

Rq are the elements ((∅, s1), . . . , (∅, sr), `) of Iq such that there exists (Ŝ1, . . . , Ŝr) ∈ V (G)r, that
satisfy,

• for each i ∈ [1, r], Ŝi is a vertex cover of Gt,

• for each i ∈ [1, r], |Ŝi| = si ≤ k, and

• min(d,Div(Ŝ1, . . . , Ŝr)) = `.

As such, a tuple (Ŝ1, . . . , Ŝr) of subsets of V (G) is a solution of Diverse Vertex Cover if and
only if ` ≥ d, the lemma follows. �

Theorem 3.2. Given a graph G, integers k, r, d, and a rooted tree decomposition D = (T, q,X )
of G of width w, one can determine whether (G, k, r, d) is a Yes-instance of Diverse Vertex
Cover in time

O(2r · (2w+1 · (k + 1))a·r · da · w · r · n),

where a = maxt∈V (T ) δ(t) ≤ 2 and n = |V (T )|.

Proof. Let us analyze the time needed to compute Rq. We have that, for each t ∈ V (D), |It| ≤
(2·|Xt| · (k + 1))r · (d + 1). Note that given I1, . . . , Iδ(t) be elements of Rt1 , . . . ,Rtδ(t) , there are at

most 2|new(t)|·r ≤ 2r ways to create an element I of Rt by selecting, or not the (potential) new
element of Xt for each set Si, i ∈ [1, r]. The remaining is indeed fixed by I1, . . . , Iδ(t). Thus, Rt
can be computed in time O(r · |Xt| ·2r ·

∏δ(t)
i=1 |Rti |), where the factor r · |Xt| appears when verifying

that the element we construct satisfy ∀j ∈ [1, r] , E(G[Xj \Sj ]) = ∅. As we need to compute Rt for
each t ∈ V (D) and that |V (D)| = O(n) and we can assume that δ(t) ≤ 2 for each t ∈ V (D), the
theorem follows. �

Remark 3.3. Given a graph G and a vertex cover Z of G of size k, one can find a rooted path
decomposition D = (T, q,X ) of G of width k, in linear time.

This can be done by considering the bags Z ∪{v} for each v ∈ V (G) in any fixed order. Thus, from
Theorem 3.2, we get the following corollary, which establishes an upper bound for the running time
of our dynamic programming algorithm for Diverse Vertex Cover solely in terms of the size k
of the vertex cover, the number r of requested solutions, and the diversity d.

Corollary 3.4. Diverse Vertex Cover can be solved on an input (G, k, r, d) in time O((2k+2 ·
(k + 1))r · d · k · r · |V (G)|).
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4 Computing Diverse Solutions using the Dynamic Programming
Core model

In this section, we show that the process illustrated in Section 3, of lifting a dynamic programming
algorithm for a combinatorial problem to an algorithm for its diverse version, can be generalized
to a much broader context. As a first step, we introduce the notion of dynamic programming core,
a suitable formalization of the intuitive notion of tree-width based dynamic programming that
satisfies three essential properties. First, this formalization is general enough to be applicable to a
large class of combinatorial optimization problems. Second, this formalization is compatible with
the notion of diversity, in the sense that the lifting of an algorithm for a problem to an algorithm for
the diverse version of this problem can be done automatically, without requiring human ingenuity.
Third, the resulting lifted algorithm is fast when compared with the original one. In particular,
the running time of the resulting algorithm is polynomial in the diversity (the pairwise sum of
Hamming distances). So, the only important new factor in the running time is the number of the
solutions, which we consider an additional parameter. This is a highly desired property since this
allows our framework to be applied in the context where the sizes of the considered solution sets
are not bounded.

Below, we let G be the set of simple, undirected graphs whose vertex set is a finite subset of N.
We say that a subset P ⊆ G is a graph problem. Intuitively, a dynamic programming algorithm
working on tree decompositions may be understood as a procedure that takes a graph G ∈ G and a
rooted tree decomposition D of G as input, and constructs a certain amount of data for each node
of D. The data at node t is constructed by induction on the height of t, and in general, this data
is used to encode the existence of a partial solution on the graph induced by bags in the sub-tree
of D rooted at t. In Definition 4.1 below, this is captured in the relation ProcessC,G,D(t). Such an
algorithm accepts the input graph G if the data associated with the root node contains a string
belonging to a set of accepting strings, captured below in the set AcceptC,G,D. We formalize this
intuitive notion in the following concept of dynamic programming core; see Figure 1.

Definition 4.1 (Dynamic Programming Core). A dynamic programming core is an algorithm
C that takes a graph G ∈ G and a rooted tree decomposition D of G as input, and produces the
following data.

• A finite set AcceptC,G,D ⊆ {0, 1}∗.

• A finite set ProcessC,G,D(t) ⊆ ({0, 1}∗)δ(t)+1 for each t ∈ V (D).

We let τ(C, G,D) be the overall time necessary to construct the data associated with all nodes
of D. The size of C on a pair (G,D) is defined as

Size(C, G,D) = max{|ProcessC,G,D(t)| | t ∈ V (D)}.

Next, we define the notion of a witness for a dynamic programming core. Intuitively such
witnesses are certificates of the existence of a solution.

Definition 4.2. Let C be a dynamic programming core, G be a graph in G, and D = (T, q,X ) be
a rooted tree decomposition of G. A (C, G,D)-witness is a function α : V (T ) → {0, 1}∗ such that
the following conditions are satisfied.

1. For each t ∈ V (T ), with children t1, . . . , tδ(t), (α(t), α(t1), . . . , α(tδ(t))) ∈ ProcessC,G,D(t).
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Figure 1: An illustration of the dynamic programming core model (Definition 4.1) using the vertex cover
problem as an example. D is a tree decomposition of G rooted at q. In this example, the restriction of a
partial solution to a given bag is represented by a pair (S, s) where S is a subset of the bag and s ∈ {0, 1, 2, 3}.
Formally, such a pair would be encoded in binary. The dynamic programming core C assigns to each node
t of D a set ProcessC,G,D(t) of tuples of the form ((S, s), (S1, s1), . . . , (Sδ(t), sδt)), where δ(t) is the number
of children of t. The function α is a (C, G,D)-witness (Definition 4.2) because α(q) = ({d}, 3) belongs
to AcceptC,G,D and for each node t, the tuple (α(t), α(t1), . . . , α(tδ(t))) belongs to ProcessC,G,D(t). For
instance, the tuple (({d}, 3), ({d}, 2), ({d}, 0)) belongs to ProcessC,G,D(q) and (({d}, 2), ({b}, 2)) belongs to
ProcessC,G,D(t1). Intuitively, α represents a solution to the given problem. In this case, a vertex cover of
size at most 3 (the vertex cover {a, b, d} in the graph G). A formal specification of the core in this example
will be given in Section 4.2.
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2. α(q) ∈ AcceptC,G,D.

Using the notion of witness, we define formally what it means for a dynamic programming core
to solve a combinatorial problem.

Definition 4.3. We say that a dynamic programming core C solves a problem P if for each graph
G ∈ G, and each rooted tree decomposition D of G, G ∈ P if and only if a (C, G,D)-witness exists.

In other words, if a dynamic programming core C solves a problem P, then for each each graph
G ∈ P and each tree decomposition D of G there exists at least one (C, G,D)-witness. On the
other hand, for each graph G /∈ P and each tree decomposition D of G, no such a (C, G,D)-witness
exists.

Theorem 4.4. Let P be a graph problem and C be a dynamic programming core that solves P.
Given a graph G ∈ G and a rooted tree decomposition D of G, one can determine whether G ∈ P
in time

O

 ∑
t∈V (T )

|ProcessC,G,D(t)|+ τ(C, G,D)

 .

Proof. Given C, G, and D = (T, q,X ), we construct the set AcceptC,G,D and the sets ProcessC,G,D(t)
for each t ∈ V (D). By definition, this can be done in time τ(C, G,D).

Given t ∈ V (T ) and w ∈ {0, 1}∗, a (C, G,D, t, w)-witness is a function

β : V (subtree(T, t))→ {0, 1}∗

such that for each t′ ∈ V (subtree(T, t)), with children t1, . . . , tδ(t),

(β(t′), β(t1), . . . , β(tδ(t))) ∈ ProcessC,G,D(t)

and β(t) = w. Note that there exists a (C, G,D)-witness if and only if there exists a (C, G,D, q, w)-
witness for some w ∈ {0, 1}∗.

For each t ∈ V (T ), we define Π(G,D, t) to be the set of every w ∈ {0, 1}∗ such that there
exists a (C, G,D, t, w)-witness. Let t ∈ V (T ) and assume that we are able to construct Π(G,D, ti)
for every i ∈ [1, δ(t)] where t1, . . . , tδ(t) are the children of t. We can then construct Π(G,D, t) as
follows. For each (w,w1, . . . , wδ(t)) ∈ ProcessC,G,D(t), we add w to Π(G,D, t) if for each i ∈ [1, δ(t)],
wi ∈ Π(G,D, ti). It is easy to see that for each such w, there exists a (C, G,D, t, w)-witness that is
an extension of the (C, G,D, ti, wi)-witness, i ∈ [1, δ(t)]. Moreover if there exists a (C, G,D, t, w)-
witness β for some w ∈ {0, 1}∗, then, for each i ∈ [1, δ(t)], the restriction of β to subtree(T, ti) is
a (C, G,D, ti, wi)-witness for some wi ∈ {0, 1}∗, and so, by induction hypothesis, wi ∈ Π(G,D, ti).
This implies that our construction has correctly added w to Π(G,D, t). Thus Π(G,D, t) is correctly
constructed. From Definition 4.3, we have that G ∈ P if and only if AcceptC,G,D ∩Π(G,D, q) 6= ∅.
Note that the time needed to construct Π(G,D, q) is O

(∑
t∈V (T ) |ProcessC,G,D(t)|

)
. Therefore, the

theorem follows. �

4.1 Dynamic Programming Cores for Vertex Problems

Let C be a dynamic programming core. A C-vertex-membership function is a function ρ : N ×
{0, 1}∗ → {0, 1} such that for each graph G, each rooted tree decomposition D = (T, q,X ) of G
and each (C, G,D)-witness α, it holds that ρ(v, α(t)) = ρ(v, α(t′)) for each edge (t, t′) ∈ E(T ) and
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each vertex v ∈ Xt ∩Xt′ . Intuitively, if G is a graph and D is a rooted tree decomposition of G,
then a C-vertex-membership together with a (C, G,D)-witness, provide an encoding of a subset of
vertices of the graph. More precisely, we let

Sρ(G,D, α) = {v | ∃t ∈ V (TD), ρ(v, α(t)) = 1}

be this encoded vertex set. Given a C-vertex-membership function ρ, we let ρ̂ : {0, 1}∗ → 2N be the
function that sets ρ̂(w) = {v ∈ N | ρ(v, w) = 1} for each w ∈ {0, 1}∗.

Let P be a vertex-problem, C be a dynamic programming core, and ρ be a C-vertex-membership
function. We say that (C, ρ) solves P if for each graph G ∈ G, each subset S ⊆ V (G), and each
rooted tree decomposition D, (G,S) ∈ P if and only if there exists a (C, G,D)-witness α such that
S = Sρ(G,D, α).

The following theorem is the main result of this section. It shows how to transform dynamic
programming cores for problems P1, . . . ,Pr into a dynamic programming core for the problem
Divd(P1, . . . ,Pr).

Theorem 4.5. Let P1, . . . ,Pr be vertex-problems, let (Ci, ρi) be a dynamic programming core for
Pi, and let d be an integer. The problem Divd(P1, . . . ,Pr), on graph G with rooted tree decomposi-
tion D = (T, q,X ), can be solved in time

O(da · |V (T )| ·
r∏
i=1

Size(Ci, G,D) +
r∑
i=1

τ(Ci, G,D)),

where a = maxt∈V (T ) δ(t) ≤ 2.

Let w1, . . . , wr ∈ {0, 1}∗ and v ∈ V (G). We extend the definition of diverse influence to w1, . . . , wr
such that

I(w1, . . . , wr, v) = I(ρ̂1(w1), . . . , ρ̂r(wr), v).

Before proving Theorem 4.5, we state and prove the following technical lemma.

Lemma 4.6. Let G be a graph and D = (T, q,X ) be a rooted tree decomposition of G. (G,Z1, . . . , Zr)
belongs to Divd(P1, . . . ,Pr) if and only if there exist α1, . . . , αr : V (T )→ {0, 1}∗ such that the fol-
lowing conditions are satisfied.

1. For each i ∈ [1, r], αi is a (Ci, G,D)-witness and Zi = Sρi(G,D, αi).

2.
∑

t∈V (D)
∑

v∈forg(t) I(α1(t), . . . , αr(t), v) ≥ d.

Proof. First assume that (G,Z1, . . . , Zr) belongs to Divd(P1, . . . ,Pr). By Definition 1.1, for each
i ∈ [1, r], we have that (G,Zi) ∈ Pi, and so, there exists a (Ci, G,D)-witness αi such that Zi =
Sρi(G,D, αi). Thus Condition 1 is satisfied. Moreover, we have that for each t ∈ V (D) \ {q} and
each v ∈ Xt, I(α1(t), . . . , αr(t), v) = I(Z1, . . . , Zr, v). Together with the fact that each vertex is in
exactly one set forg(t), t ∈ V (D) \ {q}, and Div(Z1, . . . , Zr) ≥ d imply Condition 2.

Assume now that there exist α1, . . . , αr : V (T ) → {0, 1}∗ that satisfy Conditions 1 and 2.
Condition 1 implies that for each i ∈ [1, r], (G,Zi) ∈ Pi. Moreover, as for each v ∈ V (G), there is
exactly one node t ∈ V (D) \ {q} such that v ∈ forg(t), by definition of a rooted tree decomposition,
Condition 2 implies that Div(Z1, . . . , Zr) ≥ d. Thus, (G,Z1, . . . , Zr) belongs to Divd(P1, . . . ,Pr).�

Now we are in a position to prove Theorem 4.5. An intuitive account of what is going on in the
proof of this theorem can be found in Figure 2.
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Proof (Proof of Theorem 4.5). For each i ∈ {1, . . . , r}, we start by constructing the data corre-
sponding to the dynamic core Ci. The overall construction takes time

∑r
i=1 τ(Ci, G,D).

Subsequently, we define a dynamic core C for the problem Divd(P1, . . . ,Pr). Let G ∈ G and
D = (T, q,X ) be a rooted tree decomposition of G. The dynamic core C produces the following
data.

• AcceptC,G,D = {(w1, . . . , wr, d) | ∀i ∈ [1, r], wi ∈ AcceptCi,G,D}.

• For each t ∈ V (D), ProcessC,G,D(t) =

{((w1, . . . , wr, `), (w
1
1, . . . , w

1
r , `

1), . . . , (w
δ(t)
1 , . . . , w

δ(t)
r , `δ(t))) |

∀i ∈ [1, r], (wi, w
1
i , . . . , w

δ(t)
i ) ∈ ProcessCi,G,D(t),

s =
∑

i∈[1,δ(t)] `
i +
∑

v∈forg(t) I(w1, . . . , wr, v), ` = min{s, d}}.

Let α be a (C, G,D)-witness of (G,D), let αi be the projection of α to its i-th coordinate, and
let β be the projection of α to its last coordinate. Then we have that α is a (C, G,D)-witness for
(G,D) if and only if αi is a (Ci, G,D)-witness for (G,D), and for q being the root of D,

β(q) = min{d,
∑

t∈V (D)

∑
v∈forg(t)

I(α1(t), . . . , αr(t), v)} ≥ d.

By Lemma 4.6, we have that this happens if and only if

(G,Sρ1(G,D, α1), . . . , Sρr(G,D, αr))

belongs to Divd(P1, . . . ,Pr).
Let now analyze the running time of this procedure. When constructing ProcessC,G,D(t) for

some t ∈ V (T ), we need to combine every combination of elements of ProcessCi,G,D(t), i ∈ [1, r]
and of values of `i, i ∈ [1, δ(t)]. This can be done in time O(dδ(t) · |V (T )| ·

∏r
i=1 Size(Ci, G,D)).

Thus constructing the data associated to C, G, and D takes

O(dδ(t) · |V (T )| ·
r∏
i=1

Size(Ci, G,D) +
r∑
i=1

τ(Ci, G,D)).

Moreover, as for every t ∈ V (T ), |ProcessC,G,D(t)| ≤ dδ(t) ·
∏r
i=1 Size(Ci, G,D), then by The-

orem 4.4, Divd(P1, . . . ,Pr) can be solved in time O(da · |V (T )| ·
∏r
i=1 Size(Ci, G,D)) where a =

maxt∈V (T ) δ(t) ≤ 2. The theorem follows. �

4.2 An Illustrative Application of Theorem 4.5

In this subsection we show how to apply Theorem 4.5 in the construction of an improved dynamic
programming algorithm for Diverse Vertex Cover. The first thing to do is to describe a dynamic
programming core CVC for k-Vertex Cover. Given a graph G and a rooted tree decomposition
D = (T, q,X ), this dynamic programming core CVC produces (see Figure 1 for an illustration):

AcceptC,G,D = {(S, s) | S ⊆ Xq, s ≤ k}

ProcessC,G,D(t) = {((S, s), (S1, s1), . . . , (Sδ(t), sδ(t))) |
E(G[Xt \ S]) = ∅,
∀i ∈ [1, δ(t)] : Si ∩Xt = S ∩Xti ,

s = |forg(t) ∩ S|+
∑δ(t)

t=1
si}
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Figure 2: An illustration of the construction in the proof of Theorem 4.5. The graph G and the tree
decomposition D are the same as in Figure 1. The sets S1 = {c, d}, S2 = {a, b, d} and S3 = {c, e, f} are
vertex covers of G with diversity Div(S1, S2, S3) = 12. Let C1 = C2 = C3 be three instantiations of the
vertex-cover core. Then, for each i ∈ {1, 2, 3}, αi is a (Ci, G,D)-witness representing the vertex cover Si.
Now, let C be the combined core defined in the proof of Theorem 4.5 and let α be a (C, G,D)-witness. Then,
for each node t, α(t) = (α1(t), α2(t), α3(t), `) where ` is a counter that stores the diversity of the partial
solutions represented by α1, α2 and α3 up to node t. The value of this counter is obtained by summing the
values at the counters of the children of t plus the influence of each vertex forgotten at t. For instance, the
value at the counter of the root node q is 12 because the values of the counters of the children of q sum up
to 8 and the vertices c and d that are forgotten at q have each influence 2.
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Provided the width of the decomposition is at most k, this can be done in time O((2k+1 · (k +
1))δ(t) · k · δ(t)) for each t ∈ V (T ), where the factor k · δ(t) appears as we need the conditions
E(G[Xt \ S]) = ∅ and ∀i ∈ [1, δ(t)] , Si ∩Xt = S ∩Xti to be verified. It is easy to verify that CVC

is a dynamic programming core for the Vertex Cover problem. As described in Remark 3.3, we
know that we can construct a rooted path decomposition of G of width k. We are now considering
this rooted path decomposition. Thus, for each t ∈ V (T ), |ProcessC,G,D(t)| ≤ 2 · 2k+1 · (k + 1). By
Theorem 4.5, we obtain the following corollary, improving Corollary 3.4.

Corollary 4.7. Diverse Vertex Cover can be solved on an input (G, k, r, d) in time

O(d · |V (G)| · (2k+2 · (k + 1))r + |V (G)| · 2k+1 · (k + 1) · k).

Note that we obtain a slightly better running time than for Corollary 3.4. This is due to the fact
that verifying the properties E(G[Xt \ S]) = ∅ and ∀i ∈ [1, δ(t)] , Si ∩Xt = S ∩Xti is done when
constructing CVC and not when constructing C. Note also that, formally, we need to construct CVC

r times but as it is r times the same, we do the operation only once.

5 Diversity in Kernelization

Another key concept in the field of parameterized complexity is that of a kernelization algo-
rithm [17]. We have obtained some parallel results about the kernelization complexity of diverse
problems as well that we want to briefly sketch in this section. A polynomial kernel of a parameter-
ized problem is a polynomial-time algorithm that given any instance either solves it or constructs
in polynomial time an equivalent1 instance whose size is polynomial in the parameter. It is known
that a parameterized problem is FPT if and only if it has a (not necessarily polynomial) kernel,
and a natural step after proving a parameterized problem to be FPT is to decide whether or not it
has a polynomial kernel.

We show that the diverse variants of several basic problems parameterized by the number of
requested solutions plus solution size admit polynomial kernels as well. This is done via a variant
of the recently introduced notion of loss-less kernels [9] which are a special class of kernelizations
that - very roughly speaking - for each but polynomially (in the parameter) many bits of the input
can either decide whether it has to be part of every solution or if it may be added to a solution
without ‘destroying’ it.

For instance, consider the famous Buss kernel for Vertex Cover [8]: Given a graph G and an
integer k, we want to decide if G has a vertex cover of size k. Each vertex of degree at least k + 1
must be in each solution. Otherwise, we have to include its (at least) k + 1 neighbors, exceeding
the size constraint. On the other hand, each isolated (degree-0) vertex can be included in a vertex
cover without destroying it, but it does not cover any edge. In the ‘non-diverse’ variant, we may
remove these isolated vertices, and in the diverse variant, we have to keep some of them as they
may be used to increase the diversity. However, polynomially (in k and r) many such vertices
suffice.

We now turn to the technical description of this framework. All problems that fall into our
framework have to be subset minimization problems. In a subset minimization problem, one part
of the input is a set, called the domain of the instance, and the objective is to find a minimum size
subset of the domain that satisfies a certain property. For a subset minimization problem Π, and
an instance I of Π, we denote by D(I) the domain of I. E.g., in the Vertex Cover problem, an

1Meaning that the constructed instance is a Yes-instance if and only if the original instance was.
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I
I ′

A F

X
X ∩ A = A′′

X \ (F ∪ A′′)

I
I ′

A F
X ′

A′

A′′

Figure 3: Illustration of Definition 5.2. Observe that (F,A) is a partition of D(I) \ D(I ′). The left side
shows part ii: Each solution X to I of size k′ ≤ k contains F , and X \ (F ∪ A′′) is a solution to I ′ of size
k′ − |F ∪ A′′|. The right side shows part iii: Given a solution X ′ to I ′ of size k′ ≤ k − |F |, X ′ ∪ A′′ is
a solution of size k′ + |A′′| to the instance obtained from reintroducing A′ to I ′ via the domain recovery
algorithm (which is denoted by recI(I

′, A′).)

instance consists of a graph G and an integer k and the domain of the instance is V (G). For an
instance (I, k) of a parameterized problem, we denote its domain by D(I).

The following definition is a technical requirement to adapt loss-less kernelization to the setting
of diverse problems. Domain recovery algorithms will be used to reintroduce some elements of the
domain that have been removed during the kernelization process, in a controlled manner.

Definition 5.1. Let Π be a subset minimization problem. A domain recovery algorithm takes as
input two instances of Π, I and I ′, with D(I ′) ⊆ D(I), and a set S ⊆ D(I) \ D(I ′) and outputs in
polynomial time an instance recI(I

′, S) on domain D(I ′) ∪ S, such that |recI(I ′, S)| ≤ |I ′|+ g(|S|)
for some computable function g.

We give the definition of a loss-less kernel [9], tailored to our purposes as follows.2 We use the
following notation: For an instance I of a subset minimization problem and an integer k, we denote
by sol(I, k) the solutions of I of size at most k. We illustrate the following definition in Figure 3.

Definition 5.2. Let Π be a parameterized subset minimization problem. A loss-less kernelization
of Π is a pair of a domain recovery algorithm and an algorithm that takes as input an instance
(I, k) ∈ Σ∗ × N and either correctly concludes that (I, k) is a No-instance, or outputs a tuple
(I ′, F,A) with the following properties. (I ′, k−|F |) is an equivalent3 instance to (I, k) with D(I ′) ⊆
D(I) and (F,A) is a partition of D(I) \ D(I ′), and the following hold.

(i) There is a computable function f such that |I ′| ≤ f(k).

(ii) For all k′ ≤ k, for all X ⊆ D(I), the following holds. Let A′′ := X ∩A. Then,

X ∈ sol(I, k′)⇔ F ⊆ X and

X \ (F ∪A′′) ∈ sol(I ′, k′ − |F ∪A′′|).

(iii) For all k′ ≤ k − |F |, for all X ′ ⊆ D(I ′), and for all A′′ ⊆ A′ ⊆ A we have that:

X ′ ∈ sol(I ′, k′)⇔ X ′ ∪A′′ ∈ sol(recI(I
′, A′), k′ + |A′′|).

We call f(k) the size and g(·)4 the recovery cost of the loss-less kernel, F the forced items and A
the allowed items.

2Due to technical reasons and at a potential cost of slightly increased kernel sizes, we do not keep track of the
restricted items that are forbidden in any solution of size k.

3I.e. (I, k) is a Yes-instance if and only if (I ′, k − |F |) is.
4Function g is given implicitly in the domain recovery algorithm recI(I

′, A′).
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I
I ′

A F

A∗

Y1

Y3

Y2

X ′

Figure 4: Illustration of how loss-less kernels are used to obtain kernels for diverse problems. While the
kernelized instance I ′ preserves the Yes/No-answer of I, we may need to reintroduce a subset of A, here A∗,
to be able to obtain a diverse set of solutions. In this example, X ′ is a solution for I ′, but only (X1, X2, X3),
where Xi = X ′ ∪ Yi ∪ F for all i ∈ {1, 2, 3}, is a diverse set of solutions for the instance I. Without
reintroducing A∗ to the instance, we may not be able to obtain a diverse set of solutions for I from the
kernelized instance.

We now show that for all problems Π that admit a loss-less kernel, Diverse Π admits a (slightly
larger) kernel. The idea is as follows: When kernelizing and instance of a non-diverse problem (I, k)
to a smaller instance (I ′, k′), we preserve the Yes/No-answer, but not necessarily diverse sets of
solutions. To make sure that we have sufficiently many elements in the kernelized instance to obtain
a diverse solution if the original instance had one, we reintroduce a subset A∗ of A (the allowed
items in the loss-less kernel) to (I ′, k′). (Note that each element in A can be added to any solution
of I without destroying it.) It suffices to use a set A∗ of size at most kr, which implies that the
resulting instance remains small with respect to the cost of reintroducing A∗, k and r. For an
illustration see Figure 4.

Theorem 5.3. Let Π be a parameterized subset minimization problem that admits a loss-less kernel
of size f(k) and recovery cost g(·). Then, Diverse Π admits a kernel of size at most f(k) + g(kr).

Proof. Let (I, k, r, d) be an instance of Diverse Π. Our algorithm works as follows. We apply
the loss-less kernel to (I, k) and obtain (I ′, F,A). Let k′ := k − |F |. Then, we simply return
(recI(I

′, A∗), k′, r, d) where A∗ = A if |A| ≤ kr and otherwise, A∗ is an arbitrary size-kr subset of
A. We now show that (recI(I

′, A∗), k′, r, d) is indeed an instance of Diverse Π that is equivalent
to (I, k, r, d).

Suppose (I, k, r, d) is a Yes-instance. Then, there is a tuple S = (S1, . . . , Sr) ∈ D(I)r such that
for all i ∈ [1, r], Si ∈ sol(I, k) and Div(S) ≥ d.

Case 1 (|A| ≤ kr). In this case, A∗ = A. For all i ∈ [1, r], let Ai := Si ∩ A, S′i := Si \ Ai and
S∗i := S′i \ F . By Definition 5.2(ii), we have that S∗i ∈ sol(I ′, k − |F | − |Ai|). By Definition 5.2(iii),
this implies that S′i ∈ sol(recI(I

′, A∗), k′) (recall that k′ = k − |F |). Furthermore, since F ⊆ Si
for all i ∈ [1, r] by Definition 5.2(ii), we have that Div(S′1, . . . , S

′
r) = Div(S) ≥ d, and hence

(recI(I
′, A∗), k′, r, d) is a Yes-instance in this case.

Case 2 (|A| > kr). In this case, A∗ is an arbitrary size-kr subset of A. For all i ∈ [1, r], let
Ai := Si ∩ A, S∗i := Si \ (F ∪ Ai). By Definition 5.2(ii) we have that S∗i ∈ sol(I ′, k′ − |Ai|).
Furthermore, since removing an element from some Si can decrease the diversity of the resulting
solution by at most (r − 1), and since F ⊆ Si for all i ∈ [1, r] by Definition 5.2(ii), we have that

Div(S∗1 , . . . , S
∗
r ) ≥ Div(S)− (r − 1)

∑r

i=1
|Ai|.

We construct a tuple of solutions to recI(I
′, A∗) as follows. Let (B1, . . . , Br) a tuple of pairwise

disjoint subsets of A∗ such that for all i ∈ [1, r], |Bi| = |Ai|. Such a tuple exists since
∑r

i=1 |Ai| ≤
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kr = |A∗|. For i ∈ [1, r], let S′i := S∗i ∪Bi and S ′ := (S′1, . . . , S
′
r). Let i ∈ [1, r]. Since S∗i ∈ sol(I ′, k′−

|Ai|), |Ai| = |Bi| and Bi ⊆ A∗, we use Definition 5.2(iii) to conclude that S′i ∈ sol(recI(I
′, A∗), k′).

Now, adding Bi to S∗i increased the diversity of the resulting solution by (r− 1) · |Ai|, since no
element of Bi is added to any other solution. Hence,

Div(S ′) = Div(S∗1 , . . . , S
∗
r ) + (r − 1)

∑r

i=1
|Ai|

≥ Div(S) ≥ d.

We have shown that (recI(I
′, A∗), k′, r, d) is a Yes-instance in this case as well.

For the other direction, suppose (recI(I
′, A∗), k′, r, d) is a Yes-instance. Then, (ii) and (iii) of

Definition 5.2 immediately imply that (I, k, r, d) is a Yes-instance as well.
To bound the size of recI(I

′, A∗), we have that |I ′| ≤ f(k) by the definition of the (loss-less)
kernel, and |recI(I ′, A∗)| ≤ |I ′| + g(|A∗|) ≤ f(k) + g(kr) by the definition of a domain recovery
algorithm. �

We now exemplify the use of Theorem 5.3 by showing that several well-known kernels hold in the
diverse setting as well, giving polynomial kernels in the parameterization solution size plus the
number of requested solutions.

We briefly introduce these problems. In the d-Hitting Set problem, we are given a hypergraph
H, each of whose hyperedges contains at most d elements, and an integer k, and the goal is to find
a set S ⊆ V (H) of vertices of H of size at most k such that each hyperedge contains at least one
element from S. In the Point Line Cover problem, we are given a set of points in the plane and
an integer k, and we want to find a set of at most k lines such that each point lies on at least one of
the lines. A directed graph D is called a tournament, if for each pair of vertices u, v ∈ V (D), either
the edge directed from u to v or the edge directed from v to u is contained in the set of arcs of D.
In the Feedback Arc Set in Tournaments problem we are given a tournament and an integer
k, and the goal is to find a set of at most k arcs such that after removing this set, the resulting
directed graph does not contain any directed cycles.

Theorem 5.4. The following diverse subset minimization problems parameterized by k + r admit
polynomial kernels.

(i) Diverse Vertex Cover, on O(k(k + r)) vertices.

(ii) Diverse d-Hitting Set for fixed d, on O(kd + kr) vertices.

(iii) Diverse Point Line Cover, on O(k(k + r)) points.

(iv) Diverse Feedback Arc Set in Tournaments, on O(k(k + r)) vertices.

Proof. (i)5 The classical kernelization for Vertex Cover due to [8] consists of the following two
reduction rules. Let (G, k) be an instance of Vertex Cover. First, we remove isolated vertices
from G; since they do not cover any edges of the graph, we do not need them to construct a
vertex cover. To obtain the loss-less kernel, we put these vertices into the set A. Second, if there
is a vertex of degree more than k, this vertex has to be included in any solution; otherwise we
would have to include its more than k neighbors, resulting in a vertex cover that exceeds the size
bound. We add this vertex to F , remove it from G and decrease the parameter value by 1. This
second reduction rule finishes the description of the kernel. It is not difficult to argue that after

5This was also observed in [9].
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an exhaustive application of these two rules, the resulting kernelized instance (G′, k′) is such that
either k′ < 0, in which case we are dealing with a No-instance, or |V (G′)| = O(k2). For the domain
recovery algorithm, we can use a trivial algorithm that reintroduces some of the vertices in A to
the graph G′.

We now argue that this is indeed a loss-less kernel. Consider Definition 5.2. Item (ii) follows
immediately from the fact that each vertex cover of G of size at most k has to contain all vertices
in F and that each vertex in A has no neighbors in V (G′). The latter also implies (iii). The result
now follows from Theorem 5.3.

(ii) We show that the kernel on O(kd) vertices presented in [12, Section 2.6.1] is a loss-less
kernel. This kernel is essentially a generalization of the one presented in the proof of (i), so we will
skip some of the details. It is based on the following reduction rule: If there are k + 1 hyperedges
e1, . . . , ek+1 with Y :=

⋂k+1
i=1 ei such that for each i ∈ [k + 1], ei \ Y 6= ∅, then any solution has

to contain Y ; otherwise, to hit the hyperedges e1, . . . , ek+1, we would have to include at least
k + 1 elements in the hitting set. Moreover, if Y = ∅, we can immediately conclude that we are
dealing with a No-instance. If Y is nonempty, then we add all elements of Y to F and decrease
the parameter value by |Y |. The set A consists of all vertices that are isolated (i.e. not contained
in any hyperedge) after exhaustively applying the previous reduction rule. Following the same
argumentation above (and using the same domain recovery algorithm), we can conclude that this
procedure is a loss-less kernel on O(kd) vertices, and the result follows from Theorem 5.3.

(iii) Let (P, k) be an instance of Point Line Cover. We consider the set of the lines defined
by all pairs of points of P as the domain of (P, k), and we denote this set by L(P ). All solutions to
(P, k) can be considered a subset of L(P ). We obtain a kernel on O(k2) points as follows, cf. [12,
Exercise 2.4]. The idea is again similar to the kernel presented in (i). If there are k+ 1 points on a
line, then we have to include this line in any solution; we add such lines to the set F and remove
all points on them from P , and decrease the parameter value by 1. We finally add to A all lines
that have no points on them. We can argue in the same way as above that this gives a kernel with
at most O(k2) points and with Theorem 5.3, the result follows.

(iv) We observe that the kernel given in [12, Section 2.2.2] is a loss-less kernel. Its first reduction
rule states that if there is an arc that is contained in at least k+1 triangles, then we reverse this arc
and decrease the parameter value by 1, and the second reduction rule states that any vertex that is
not contained in a triangle can be removed. Any arc affected by the former rule will be put in the
set F and any arc affected by the latter rule will be put in the set A. We now describe the domain
recovery algorithm. Let (T, k) be the original instance and (T ′, k′) the kernelized instance, and let
(u, v) = a ∈ A be an arc. Then, we add a to T ′ and to ensure that the resulting directed graph is
a tournament, for any x ∈ {u, v} \ V (T ′), we add all arcs (x, y) ∈ E(T ) and (y, x) ∈ E(T ) to T ′.
Since a ∈ A, we know that one of its endpoints was not contained in any triangle, and hence adding
the endpoints of a and all their incident arcs does not add any triangles to the tournament. �

We would like to remark that the crucial part to use loss-less kernels in the diverse setting was
that any solution of size at most k has to contain all vertices of F , and arbitrarily adding vertices
from A does not destroy a solution. In the ‘classical’ kernelization setting, to argue that a reduction
rule is safe it is sufficient to show that the existence of a vertex cover in the original instance implies
the existence of some vertex cover in the reduced instance and vice versa, see e.g., [16, 17]. This
alone is usually not enough to argue that a reduction preserves diverse solutions.
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6 Conclusion

In this work, we considered a formal notion of diversity of a set of solutions to combinatorial
problems in the setting of parameterized algorithms. We showed how to emulate treewidth based
dynamic programming algorithms in order to solve diverse problems in FPT time, with the number
r of requested solutions being an additional parameter.

This line of research is now wide open, with many natural questions to address. As all our
results are of a positive nature, we ask: when can diversity be a source of hardness? Concretely, a
natural target in parameterized complexity would be to identify a parameterized problem Π that
is FPT, however Diverse Π being W[1]-hard when r is an additional parameter. For positive
results, an interesting research direction would be to generalize our framework for diverse problems
to other well-studied width measures for graphs, as well as to other structures, such as matroids.

In this work, we considered the sum of all pairwise Hamming distances of a set as a measure of
diversity. As pointed out, this measure has some weaknesses, and another widely used measure is
the minimum Hamming distance. In this setting, we only obtain FPT-results when the diversity
is bounded by a function of the treewidth and the number of solutions, but not in general. So,
a natural follow-up question is whether or not we can obtain FPT-results under the minimum
Hamming distance, even if the diversity is unbounded.
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[33] Patrick Schittekat and Kenneth Sörensen. OR practice — supporting 3PL decisions in the
automotive industry by generating diverse solutions to a large-scale location-routing problem.
Operations Research, 57(5):1058–1067, 2009.

[34] Andrew C. Trapp and Renata A. Konrad. Finding diverse optima and near-optima to binary
integer programs. IIE Trans., 47(11):1300–1312, 2015.

[35] Mark Wineberg and Franz Oppacher. The underlying similarity of diversity measures used in
evolutionary computation. In GECCO ’03, Part II, pages 1493–1504, 2003.

[36] Yongjie Yang and Jianxin Wang. Multiwinner voting with restricted admissible sets: com-
plexity and strategyproofness. In 27th IJCAI, pages 576–582, 2018.

21


	Introduction
	Preliminaries
	A First Example: Diverse Vertex Cover
	Incremental Computation of Diversity
	From Vertex Cover to Diverse Vertex Cover

	Computing Diverse Solutions using the Dynamic Programming Core model
	Dynamic Programming Cores for Vertex Problems
	An Illustrative Application of Theorem 4.5

	Diversity in Kernelization
	Conclusion

