

A LOGIC-BASED ALGORITHMIC META-THEOREM FOR MIM-WIDTH Benjamin Bergougnoux¹, Jan Dreier², and Lars Jaffke¹

 \forall Highlights 2022

¹University of Bergen, Norway ²Technical University of Vienna, Austria

"Each problem expressible in logic L is efficiently solvable on graphs of bounded *-width."

?? mim	-width	twin-width	FO
clique-width		MSO ₁	

treewidth

Existential MSO₁

- Vertex variables x, y, z, \ldots and vertex set variables X, Y, Z, \ldots
- Vertex set constants (colors) $\mathbf{P}, \mathbf{Q}, \ldots$
- Connectives: and (\wedge) , or (\vee) , negation (\neg) only on quantifier-free formulas.
- $\exists x, \exists X, x = y, x \in X, E(x, y) \text{ (adjacency)}$

```
Example: \exists x_1 \dots \exists x_k \bigwedge_{i \neq j} \neg E(x_i, x_j)
```

 MSO_2

Branch decompositions and mim-width

• Mim-width of branch decomposition: Max mim-value over all cuts. • Mim-width of graph: Min mim-width over all its branch decompositions.

Graph classes of bounded mim-width

Neighborhood operator

 $N_d^r(X)$ is the set of vertices v at distance at most r to at least d vertices in $X \setminus \{v\}$.

Neighborhood terms

...are built from set variables (X, Y, Z, ...) or set constants $(\mathbf{P}, \mathbf{Q}, ...)$, by applying • the neighborhood operator $N_d^r(t)$ for a neighborhood term t, or • basic set operations $t_1 \cup t_2, t_1 \cap t_2, t_1 \setminus t_2, \overline{t_1}$ for neighborhood terms t_1, t_2 .

A&C distance neighborhood (DN) logic

... is the extension of Existential MSO_1 with

Mim-width and algorithmic problems

• size measurements of nbh. terms t: $|t| \le m$ or $|t| \ge m$, • comparison between nbh. terms t_1, t_2 : $t_1 \subseteq t_2$ or $t_1 = t_2$, • connectivity constraints on nbh. terms t: conn(t), and • acyclicity constraints on nbh. terms t: acy(t).

Examples

• MAX. INDEPENDENT SET: $\exists X | X | \ge m \land N_1^1(X) \cap X = \emptyset$ • MIN. DOMINATING SET: $\exists X | X | \leq m \land X \cup N_1^1(X) = \emptyset$ • MIN. FEEDBACK VERTEX SET: $\exists X | X | \leq m \land \operatorname{acy}(\overline{X})$ • LONGEST INDUCED PATH: $\exists X | X | \ge m \land \operatorname{conn}(X) \land \operatorname{acy}(X) \land X \setminus N_3^1(X) = X$

Theorem

There is a model checking algorithm for A&C DN logic that runs in $n \mathcal{O}(dw|arphi|^2)$ time,

• where $d = d(\varphi)$ is the maximum such that $N_d(\cdot)$ appears in φ , and

• w is the mim-width of a given branch decomposition.

Our meta-theorem...

- ...captures almost all problems solvable in polynomial time on graphs of bounded mimwidth (see in the dotted box to the left), and more!
- ...also implies single-exponential algorithms param. by tree-width and clique-width.
- ... is (nearly) tight in terms of run time and in several senses, expressive power.

A&C DN mim-width	twin-width	FO
clique-width		MSO_1
treev	vidth	MSO ₂