A Logic-Based Algorithmic Meta-Theorem for Mim-Width

 Benjamin Bergougnoux ${ }^{1}$, Jan Dreier ${ }^{2}$, and Lars Jaffke ${ }^{1}$ ${ }^{1}$ University of Bergen, Norway\forall Highlights 2022
${ }^{2}$ Technical University of Vienna, Austria

Algorithmic Meta-Theorems

"Each problem expressible in logic L is efficiently solvable on graphs of bounded *-width."

??mim-width clique-width	twin-width
treewidth	MSO_{1}
	MSO_{2}

Branch decompositions and mim-width

- Mim-width of branch decomposition: Max mim-value over all cuts
- Mim-width of graph: Min mim-width over all its branch decompositions.

Graph classes of bounded mim-width

Mim-width and algorithmic problems

Existential MSO_{1}

- Vertex variables x, y, z, \ldots and vertex set variables X, Y, Z, \ldots
- Vertex set constants (colors) $\mathbf{P}, \mathbf{Q}, \ldots$
- Connectives: and (\wedge), or (V), negation (\neg) only on quantifier-free formulas.
- $\exists x, \exists X, x=y, x \in X, E(x, y)$ (adjacency)

$$
\text { Example: } \exists x_{1} \ldots \exists x_{k} \bigwedge_{i \neq j} \neg E\left(x_{i}, x_{j}\right)
$$

Neighborhood
 operator

$N_{3}^{2}(X)$

Neighborhood terms

...are built from set variables (X, Y, Z, \ldots) or set constants $(\mathbf{P}, \mathbf{Q}, \ldots)$, by applying

- the neighborhood operator $N_{d}^{r}(t)$ for a neighborhood term t, or
- basic set operations $t_{1} \cup t_{2}, t_{1} \cap t_{2}, t_{1} \backslash t_{2}, \overline{t_{1}}$ for neighborhood terms t_{1}, t_{2}

A\&C distance neighborhood (DN) logic

....is the extension of Existential MSO_{1} with

- size measurements of nbh. terms $t:|t| \leq m$ or $|t| \geq m$,
- comparison between nbh. terms $t_{1}, t_{2}: t_{1} \subseteq t_{2}$ or $t_{1}=t_{2}$,
- connectivity constraints on nbh. terms t : conn (t), and
- acyclicity constraints on nbh. terms t : acy (t).

Examples

- Max. Independent Set: $\exists X|X| \geq m \wedge N_{1}^{1}(X) \cap X=\emptyset$
- Min. Dominating Set: $\exists X|X| \leq m \wedge \overline{X \cup N_{1}^{1}(X)}=\emptyset$
- Min. Feedback Vertex Set: $\exists X|X| \leq m \wedge \operatorname{acy}(\bar{X})$
- Longest Induced Path: $\exists X|X| \geq m \wedge \operatorname{conn}(X) \wedge \operatorname{acy}(X) \wedge X \backslash N_{3}^{1}(X)=X$

Theorem

There is a model checking algorithm for A\&C DN logic that runs in $n^{\mathcal{O}}\left(d w|\varphi|^{2}\right)$ time,

- where $d=d(\varphi)$ is the maximum such that $N_{d}(\cdot)$ appears in φ, and
- w is the mim-width of a given branch decomposition.

Our meta-theorem...

- ...captures almost all problems solvable in polynomial time on graphs of bounded mimwidth (see in the dotted box to the left), and more!
- ...also implies single-exponential algorithms param. by tree-width and clique-width.
- ...is (nearly) tight in terms of run time and in several senses, expressive power.

