Status of Open Problems in the Thesis "Bounded Width Graph Classes in Parameterized Algorithms"

Lars Jaffke ${ }^{1}$
${ }^{1}$ University of Bergen, Norway
lars.jaffke@uib.no

December 6, 2022

Abstract

In this document I keep track of the status of the open problems I mentioned in my thesis. If you are aware of any results I have missed or solved one of the problems, I would appreciate it if you got in touch with me.

1 The List

$\#$	Description	Status	Comments
3.1	Is there an algorithm for Tree Decomposition running in time $2^{o\left(k^{3}\right)} \cdot n^{\mathcal{O}(1)}$?	solved	Yes. (E)
3.2	Is there some function $f: \mathbb{N} \rightarrow \mathbb{N}$ and an algorithm that given a graph G and an integer k, either decides that mimw $(G)>k$, or outputs a branch decomposition of G of mim-width at most $f(k)$, and runs in XP time parameterized by k ?	open	
3.3	Is there some constant c and an algorithm that given a graph G, either decides that mimw $(G)>1$, or outputs a branch de- copmosition of G of mim-width at most c, and runs in poly- nomial time?	open	A\&C DN (B)
3.4	Is there some fragment of MSO/First Order Logic of graphs, containing a problem that is not locally checkable, and whose corresponding MoDEL ChECKING problem is solvable in time $n^{f(\|\phi\|, \text { mimw) }, \text { if a branch decomposition of mim-width mimw of }}$ the input graph is provided?	solved	
4.1	For constant $q \geq 8$, is the clique-width of $(q, q-2)$-graphs bounded by a constant or not?	open	
4.2	Is there a polynomial-time algorithm for MAXIMUM InDEPEN- DENT SET when the input graph is given together with one of its branch decompositions of sim-width 1?	open	

9.1	Characterize the graph class Linear Mim-Width 1.	open	
9.2	Are all connected, acyclic (co-) (σ, ρ)-problems parameterized by the mim-width of a given (linear) branch decomposition of the input graph $\mathrm{W}[1]$-hard?	open	(C)
9.3	Would an $n^{o(w)}$-time algorithm for some (σ, ρ)-problem parameterized by the mim-width w of a given (linear) branch decomposition of the input graph refute ETH?	solved	Yes. (F)
10.1	Is Fall Coloring parameterized by clique-width W[1]-hard?	solved	Yes. (A)
10.2	Would an $n^{2^{o(w)}}$-time algorithm for Fall Coloring, where w denotes the clique-width of the input graph, refute ETH?	solved	Yes. (A)
10.3	Is Clique Coloring parameterized by clique-width W[1]hard?	open	
10.4	Is there a computable function $g: \mathbb{N} \rightarrow \mathbb{N}$ such that each graph of clique-width cw can be clique colored with at most $g(\mathrm{cw})$ many colors?	open	
10.5	Is there an $n^{2^{\left.2^{o(c w}\right)}}$-time algorithm for Clique Coloring, where cw denotes the clique-width of the input graph, or would such an algorithm refute ETH?	open	
10.6	Is there a $2^{2^{2^{\circ}(\mathrm{cw})}} \cdot n^{\mathcal{O}(1)}$-time algorithm for 2-Clique ColORING or would such an algorithm refute ETH?	open	
10.7	Is b-Coloring NP-complete on circular arc graphs, or, more generally, on any graph class of constant mim-width?	solved	$\begin{gathered} \text { NP-c on } \\ \text { Ucircular arc } \end{gathered}$
10.8	Is b-Coloring parameterized by the mim-width of a given branch decomposition of the input graph plus the number of colors XP?	solved	Yes. (B)
10.9	For which function $f: \mathbb{N} \rightarrow \mathbb{N}$ does it hold that for all fixed $k \geq 3$, b-Coloring on graphs of clique-width cw can be solved in time $\mathcal{O}^{\star}\left(f(k)^{\mathrm{cw}}\right)$ while an algorithm running in time $\mathcal{O}^{\star}\left((f(k)-\epsilon)^{\mathrm{cw}}\right)$, for any $\epsilon>0$, would refute SETH? What about fall Coloring, or Clique Coloring?	open	
$\begin{gathered} 10.10 \\ \text { (I) } \\ \hline \end{gathered}$	Is b-Coloring parameterized by the treewidth of the input graph W[1]-hard?	solved	Yes. (D)
$\begin{gathered} 10.10 \\ \text { (II) } \end{gathered}$	What is the fastest algorithm for b-Coloring parameterized by treewidth under the ETH?	open	

(A). J., Lima, Lokshtanov [STACS 2021].
(B). Bergougnoux, Dreier, J. [arXiv:2202.13335, SODA 2023].
(C). Bakkane, J. [IPEC 2022]: Dichotomies for minimization problems, and for maximization problems when σ and ρ are finite.
(D). J., Lima, Sharma [arXiv:2209.07772]: b-Coloring parameterized by pathwidth is XNLP-complete, which implies it is $\mathrm{W}[t]$-hard for all t.
(E). Korhonen and Lokshtanov [arXiv:2211.07154]: A $2^{\mathcal{O}\left(k^{2}\right)} n^{4}$ time algorithm that given a graph G decides if G has a tree decomposition of width at most k.
(F). Bergougnoux, personal communication 2022: Independent Set given a linear branch decomposition of mim-width w cannot be solved in $n^{o(w)}$ time unless the ETH fails.

